DDR爱好者之家 Design By 杰米
在深度学习中,如果我们想获得某一个层上的feature map,就像下面的图这样,怎么做呢?
我们的代码是使用keras写的VGG16网络,网络结构如图:
那么我们随便抽取一层的数据吧,就拿第四层的pooling以后的结果作为输出吧,参考上面的网络结构,得到的结果维度应该是[1,56,56,128]的尺度。
怎么做呢?
首先通过keras构建模型:
model = VGG16(include_top=True, weights='imagenet')
然后设置输入和输出为:原始的输入和该层对应的输出,然后使用predict函数得到对应的结果
dense_result = Model(inputs=model.input,outputs=model.get_layer("block2_pool").output) dense_res = dense_result.predict(x)#使用predict得到该层结果
设置随机数(或者固定的数字)来获取某一层的结果
rand_layer = random.randint(10,128) x_output = dense_res[0,:,:,rand_layer] #获取某一层的数据:因为原始数据维度是[1,x,x,depths]的,我们仅仅提取某一个depth对应的[x,x]维度的信息 # 获取最大值,然后对该层数据进行归一化之后投影到0-255之间 max = np.max(x_output) print(max,"max value is :") # 然后进行归一化操作 x_output =x_output.astype("float32") / max * 255 print(x_output.shape)
最后对该层的feature进行显示,我们使用Pillow库
# 把图像转换成image可以表示的方式进行显示 from PIL import Image as PILImage x_output =PILImage.fromarray(np.asarray(x_output)) x_output1 = x_output.resize((400,400)) x_output1.show() print(np.asarray(x_output1))
结果如上图所示啦~
以上这篇在keras中获取某一层上的feature map实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]