DDR爱好者之家 Design By 杰米

我在做tensorflow开发的时候遇到如下的错误,我请教了深度学习社区q群中的大神,大神说这是运算图还在内存中,没有及时释放,需要restart一下kernel,但是由于我的代码不能停止执行,所以没办法用重新运行代码来解决释放内存运行图的问题。

问题:

with tf.Session() as sess:

saver = tf.train.Saver() #保存运算图

当我退出with并且立马执行

self.sess = tf.Session()
self.saver = tf.train.import_meta_graph('./Model/model.ckpt.meta')
self.saver.restore(self.sess, tf.train.latest_checkpoint('./Model/'))

的时候由于session和graph没有释放内存的运算图就产生了报错,

Tensorflow 实现释放内存

解决办法:

在with tf.Session() as sess: 之后同时也要在with的范围以外(注意),添加

tf.reset_default_graph()

代码来重置默认的图,这样就能解决我下一步执行代码

self.sess = tf.Session()
self.saver = tf.train.import_meta_graph('./Model/model.ckpt.meta')
self.saver.restore(self.sess, tf.train.latest_checkpoint('./Model/'))

所产生的问题了。

以上这篇Tensorflow 实现释放内存就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米