DDR爱好者之家 Design By 杰米

Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的。

用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了。

1. 按比例预留:

tf_config = tensorflow.ConfigProto() 
tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% 
session = tensorflow.Session(config=tf_config) 

2. 或者干脆自适应然后自动增长:

tf_config = tensorflow.ConfigProto() 
tf_config.gpu_options.allow_growth = True # 自适应 
session = tensorflow.Session(config=tf_config) 

以上这篇tensorflow 限制显存大小的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米