系统默认是torch.FloatTensor类型
data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor
data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型
(1) CPU或GPU之间的张量转换
在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换type()函数,
data为Tensor数据类型,data.type()为给出data的类型,
如果使用data.type(torch.FloatTensor)则强制转换为torch.FloatTensor类型张量
(2) CPU张量转化成GPU张量
data.cuda()
(3) GPU张量转化成CPU张量
data.cpu()
(4) Variable变量转换成普通的Tensor
Variable是一个Wrapper,装在里面的data是tensor,如果Var是Variable变量,使用Var.data获得Tensor变量
(5) Tensor与numpy array之间的转换
Tensor->numpy 使用data.numpy(),data为Tensor变量
Numpy->Tensor 使用torch.from_numpy(data),data为numpy变量
(6) 分别获取张量和数组的尺寸,注意size的使用
torch 张量
获取张量的尺寸 a.size()
numpy 数组
获取数组的尺寸 b.shape
获取数组中元素的个数: b.size (这里和张量中的属性的size的含义不同)
(7) 升维和降维的问题
unsqueeze(N)升维到第N维
squeeze(N)降维第N维
需要做如下操作:
x = x.unsqueeze(0) 假如x=(3,1080,1920) 操作后 x = (1,3,1080,1920)
降维也是做同样的操作
以上这篇pytorch实现Tensor变量之间的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]