DDR爱好者之家 Design By 杰米
一、作用
创建一个新的Tensor,该Tensor的type和device都和原有Tensor一致,且无内容。
二、使用方法
如果随机定义一个大小的Tensor,则新的Tensor有两种创建方法,如下:
inputs = torch.randn(m, n) new_inputs = inputs.new() new_inputs = torch.Tensor.new(inputs)
三、具体代码
import torch rectangle_height = 1 rectangle_width = 4 inputs = torch.randn(rectangle_height, rectangle_width) for i in range(rectangle_height): for j in range(rectangle_width): inputs[i][j] = (i + 1) * (j + 1) print("inputs:", inputs) new_inputs = inputs.new() print("new_inputs:", new_inputs) # Constructs a new tensor of the same data type as self tensor. print(new_inputs.type(), inputs.type()) print('') inputs = inputs.squeeze(dim=0) print("inputs:", inputs) # new_inputs = inputs.new() new_inputs = torch.Tensor.new(inputs) print("new_inputs:", new_inputs) # Constructs a new tensor of the same data type as self tensor. print(new_inputs.type(), inputs.type()) if torch.cuda.is_available(): device = torch.device("cuda") inputs, new_inputs = inputs.to(device), new_inputs.to(device) print(inputs.device, new_inputs.device)
结果如下:
可以看到不论inputs是多少维的,新建的new_inputs的type和device都与inputs保持一致
inputs: tensor([[1., 2., 3., 4.]]) new_inputs: tensor([]) torch.FloatTensor torch.FloatTensor inputs: tensor([1., 2., 3., 4.]) new_inputs: tensor([]) torch.FloatTensor torch.FloatTensor cuda:0 cuda:0
四、实际应用(添加噪声)
可以对Tensor添加噪声,添加如下代码即可实现:
noise = inputs.data.new(inputs.size()).normal_(0,0.01) print(noise)
结果如下:
tensor([ 0.0062, 0.0137, -0.0209, 0.0072], device='cuda:0')
以上这篇Pytorch中.new()的作用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月11日
2025年01月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]