DDR爱好者之家 Design By 杰米

最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单

pip install tensorboardX

然后在代码里导入

from tensorboardX import SummaryWriter

然后声明一下自己将loss写到哪个路径下面

writer = SummaryWriter('./log')

然后就可以愉快的写loss到你得这个writer了

niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

其中,add_scalars是将不同得变量添加到同一个图下,图的名称是add_scalars得第一个变量

然后为这个图中不同得曲线添加不同得标题,上面这一行代码

writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

后面得dict中得key是曲线的名称,后面的value是对应得append的值,再后面得niter是x坐标,这句话得意思就相当于,对于图名称为args.result_path + 'Train_val_loss'的图,对曲线名称为args.result_path+'train_loss'添加新的点,这个点为(niter, loss.data.item())

同样的,我可以画出val的loss

niter = epoch * len(train_loader) + i
writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'val_loss': mean_loss}, niter)

writer保存到了我们刚刚声明的路径'./log‘下面,然后终端启动tensorboard

tensorboard --logdir ./log --port 8890

不会用得进行tensorboard --help即可

然后进行端口映射就行了

实际上在使用的过程中,我发现了,如果你要保存的结果在各个子文件夹内,然后你在父文件夹运行tensorboard,就可以在浏览器看到各种结果,而不必再进行不同的端口映射

pytorch使用tensorboardX进行loss可视化实例

比如上面这个,我的resnet文件夹下有不同的我writer写入的文件,在父目录下启动tensorboard之后,

pytorch使用tensorboardX进行loss可视化实例

没毛病!

补充拓展:pytorch产生loss的计算图代码

废话不多说,直接上代码

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
  def __init__(self):
    super(Net,self).__init__()
    self.conv1=nn.Conv2d(1,6,5)
    self.conv2=nn.Conv2d(6,16,5)
    self.fc1=nn.Linear(16*5*5,120)
    self.fc2=nn.Linear(120,84)
    self.fc3=nn.Linear(84,10)
  def forward(self,x):
    x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))
    x=F.max_pool2d(F.relu(self.conv2(x)),2)
    x=x.view(x.size()[0],-1)
    print(x)
    x=F.relu(self.fc1(x))
    x=F.relu(self.fc2(x))
    x=self.fc3(x)
    return x
net=Net()
#params=list(net.parameters())
#for name,parameters in net.named_parameters():
#  print(name,':',parameters.size())
#print(len(params))
#print(net)
input=Variable(t.randn(1,1,32,32))
output=net(input)
#out.size()
target=Variable(t.arange(0,10))
criterion=nn.MSELoss()
loss=criterion(output,target)
loss.grad_fn

以上这篇pytorch使用tensorboardX进行loss可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。