DDR爱好者之家 Design By 杰米

在拿到数据后,最需要做的工作之一就是查看一下自己的数据分布情况。而针对数据的分布,又包括pdf和cdf两类。

下面介绍使用python生成pdf的方法:

使用matplotlib的画图接口hist(),直接画出pdf分布;

使用numpy的数据处理函数histogram(),可以生成pdf分布数据,方便进行后续的数据处理,比如进一步生成cdf;

使用seaborn的distplot(),好处是可以进行pdf分布的拟合,查看自己数据的分布类型;

Python处理PDF与CDF实例

上图所示为采用3种算法生成的pdf图。下面是源代码。

from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

arr = np.random.normal(size=100)

# plot histogram
plt.subplot(221)
plt.hist(arr)

# obtain histogram data
plt.subplot(222)
hist, bin_edges = np.histogram(arr)
plt.plot(hist)

# fit histogram curve
plt.subplot(223)
sns.distplot(arr, kde=False, fit=stats.gamma, rug=True)
plt.show()

下面介绍使用python生成cdf的方法:

使用numpy的数据处理函数histogram(),生成pdf分布数据,进一步生成cdf;

使用seaborn的cumfreq(),直接画出cdf;

Python处理PDF与CDF实例

上图所示为采用2种算法生成的cdf图。下面是源代码。

from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

arr = np.random.normal(size=100)

plt.subplot(121)
hist, bin_edges = np.histogram(arr)
cdf = np.cumsum(hist)
plt.plot(cdf)

plt.subplot(122)
cdf = stats.cumfreq(arr)
plt.plot(cdf[0])

plt.show()

在更多时候,需要把pdf和cdf放在一起,可以更好的显示数据分布。这个实现需要把pdf和cdf分别进行归一化。

Python处理PDF与CDF实例

上图所示为归一化的pdf和cdf。下面是源代码。

from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

arr = np.random.normal(size=100)

hist, bin_edges = np.histogram(arr)
width = (bin_edges[1] - bin_edges[0]) * 0.8
plt.bar(bin_edges[1:], hist/max(hist), width=width, color='#5B9BD5')

cdf = np.cumsum(hist/sum(hist))
plt.plot(bin_edges[1:], cdf, '-*', color='#ED7D31')

plt.xlim([-2, 2])
plt.ylim([0, 1])
plt.grid()

plt.show()

以上这篇Python处理PDF与CDF实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。