DDR爱好者之家 Design By 杰米

TSNE降维

降维就是用2维或3维表示多维数据(彼此具有相关性的多个特征数据)的技术,利用降维算法,可以显式地表现数据。(t-SNE)t分布随机邻域嵌入 是一种用于探索高维数据的非线性降维算法。它将多维数据映射到适合于人类观察的两个或多个维度。

python代码

km.py

#k_mean算法
import pandas as pd
import csv
import pandas as pd 
import numpy as np
 
 
#参数初始化
inputfile = 'x.xlsx' #销量及其他属性数据
outputfile = 'x_1.xlsx' #保存结果的文件名
k = 2 #聚类的类别
iteration = 3 #聚类最大循环次数
 
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
 
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化,std()表示求总体样本方差(除以n-1),numpy中std()是除以n
 
print('data_zs')
 
from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, max_iter = iteration) #分为k类
#model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
print('data_zs')
model.fit(data_zs) #开始聚类
 
#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
print('data_zs')
print(r)
r.columns = list(data.columns) + [u'类别数目'] #重命名表头
print(r)
 
#详细输出原始数据及其类别
 
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1) #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
r.to_excel(outputfile) #保存结果

TSNE.py

# coding=utf-8
 
from sklearn.manifold import TSNE 
from pandas.core.frame import DataFrame
import pandas as pd 
import numpy as np 
 
import km as k 
#用TSNE进行数据降维并展示聚类结果
 
tsne = TSNE()
tsne.fit_transform(k.data_zs) #进行数据降维,并返回结果
tsne = pd.DataFrame(tsne.embedding_, index = k.data_zs.index) #转换数据格式
 
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
 
#不同类别用不同颜色和样式绘图
d = tsne[k.r[u'聚类类别']== 0]  #找出聚类类别为0的数据对应的降维结果
plt.plot(d[0], d[1], 'r.')
d = tsne[k.r[u'聚类类别'] == 1]
plt.plot(d[0], d[1], 'go')
#d = tsne[k.r[u'聚类类别'] == 2]
#plt.plot(d[0], d[1], 'b*')
plt.savefig("data.png")
plt.show()

数据格式

数据需要用xlsx文件存储,表头名为Id。

执行 TSNE.py即可获得可视化图片。

python代码实现TSNE降维数据可视化教程

以上这篇python代码实现TSNE降维数据可视化教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。