DDR爱好者之家 Design By 杰米
parquet数据:列式存储结构,由Twitter和Cloudera合作开发,相比于行式存储,其特点是:
可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量;压缩编码可以降低磁盘存储空间,使用更高效的压缩编码节约存储空间;只读取需要的列,支持向量运算,能够获取更好的扫描性能。
那么我们怎么在pyspark中读取和使用parquet数据呢?我以local模式,linux下的pycharm执行作说明。
首先,导入库文件和配置环境:
import os from pyspark import SparkContext, SparkConf from pyspark.sql.session import SparkSession os.environ["PYSPARK_PYTHON"]="/usr/bin/python3" #多个python版本时需要指定 conf = SparkConf().setAppName('test_parquet') sc = SparkContext('local', 'test', conf=conf) spark = SparkSession(sc)
然后,使用spark进行读取,得到DataFrame格式的数据:host:port 属于主机和端口号
parquetFile = r"hdfs://host:port/Felix_test/test_data.parquet"
df = spark.read.parquet(parquetFile)
而,DataFrame格式数据有一些方法可以使用,例如:
1.df.first() :显示第一条数据,Row格式
print(df.first())
2.df.columns:列名
3.df.count():数据量,数据条数
4.df.toPandas():从spark的DataFrame格式数据转到Pandas数据结构
5.df.show():直接显示表数据;其中df.show(n) 表示只显示前n行信息
6.type(df):显数据示格式
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]