前言
"htmlcode">
import random list(dir(random)) ['BPF', 'LOG4','NV_MAGICCONST','RECIP_BPF','Random','SG_MAGICCONST', 'SystemRandom','TWOPI','betavariate','choice','choices','expovariate','gammavariate', 'gauss','getrandbits','getstate','lognormvariate','normalvariate', 'paretovariate','randint','random','randrange','sample','seed', 'setstate','shuffle','triangular','uniform','vonmisesvariate','weibullvariate'] #加载所需要的包 import random import matplotlib.pyplot as plt import seaborn as sns
random.random()
描述:random.random() 用于生成一个0到1的随机符点数: 0 <= n < 1.0
语法:random.random()
#生成一个随机数 random.random() 0.7186311708109537 #生成一个4位小数的随机列表 [round(random.random(),4) for i in range(10)] [0.1693, 0.4698, 0.5849, 0.6859, 0.2818, 0.216, 0.1976, 0.3171, 0.2522, 0.8012] #生成一串随机数 for i in range(10): print(random.random()) 0.4386055639247348 0.4394437853977078 0.231862963682833 0.6483168963553342 0.12106581255811855 0.7043874986531355 0.38729519658498623 0.6492256157170393 0.463425050933564 0.2298431522075462
random.choice()
描述:从非空序列seq中随机选取一个元素。如果seq为空则弹出 IndexError异常。
语法:random.choice( seq)seq 可以是一个列表,元组或字符串。
L = [0,1,2,3,4,5] random.choice(L) 2 L = 'wofeichangshuai' random.choice(L) 'h'
random.choices()
描述:从集群中随机选取k次数据,返回一个列表,可以设置权重。
注意每次选取都不会影响原序列,每一次选取都是基于原序列。也就是有放回抽样
语法:random.choices(population,weights=None,*,cum_weights=None,k=1)
参数:
- population:集群。
- weights:相对权重。
- cum_weights:累加权重。
- k:选取次数。
a = [1,2,3,4,5] random.choices(a,k=5) [2, 5, 2, 1, 3] random.choices(a,weights=[0,0,1,0,0],k=5) [3, 3, 3, 3, 3] random.choices(a,weights=[1,1,1,1,1],k=5) [3, 1, 5, 2, 2] #多次运行,5被抽到的概率为0.5,比其他的都大 random.choices(a,weights=[0.1,0.1,0.2,0.3,0.5],k=5) [5, 4, 4, 4, 2] random.choices(a,weights=[0.1,0.1,0.2,0.3,0.5],k=5) [5, 4, 5, 5, 2] random.choices(a,weights=[0.1,0.1,0.2,0.3,0.5],k=5) [5, 2, 2, 5, 5] random.choices(a,cum_weights=[1,1,1,1,1],k=5) [1, 1, 1, 1, 1]
对每一条语句不妨各自写一个循环语句让它输出个十遍八遍的,你就足以看出用法了。
结论:参数weights设置相对权重,它的值是一个列表,设置之后,每一个成员被抽取到的概率就被确定了。比如weights=[1,2,3,4,5],那么第一个成员的概率就是P=1/(1+2+3+4+5)=1/15。
cum_weights设置累加权重,Python会自动把相对权重转换为累加权重,即如果你直接给出累加权重,那么就不需要给出相对权重,且Python省略了一步执行。比如weights=[1,2,3,4],那么cum_weights=[1,3,6,10],这也就不难理解为什么cum_weights=[1,1,1,1,1]输出全是第一
random.getrandbits()
描述:返回一个不大于K位的Python整数(十进制),比如k=10,则结果在0~2^10之间的整数。
语法:random.getrandbits(k)
random.getrandbits(10) 379
random.getstate()
描述:返回一个捕获到的 生成器当前内部状态 的对象,可以将此对象传递给 setstate() 以恢复到这个状态。
语法:random.getstate()
random.setstate()
描述:state 应该是从之前调用 getstate() 获得的,而 setstate() 将生成器的内部状态恢复到调用 getstate() 时的状态。根据下面的例子可以看出,由于生成器内部状态相同时会生成相同的下一个随机数,我们可以使用 getstate() 和 setstate() 对生成器内部状态进行获取和重置到某一状态下。
语法:random.setstate(state)
state = random.getstate() random.random() 0.489148634943 random.random() 0.22359638172661822 random.setstate(state) random.random() 0.48914863494
random.randint()
描述:用于生成一个指定范围内的整数。
语法:random.randint(a, b),其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b
random.randint(1, 8) 3 random.randint(1, 8) 4
random.randrange()
描述:按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, … 96, 98]序列中获取一个随机数,random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。
语法:random.randrange([start], stop[, step])
- 不指定step,随机生成[a,b)范围内一个整数。
- 指定step,step作为步长会进一步限制[a,b)的范围,比如randrange(0,11,2)意即生成[0,11)范围内的随机偶数。
- 不指定a,则默认从0开始。
#不限制 [random.randrange(0,11) for i in range(5)] [4, 6, 3, 9, 5] #随机偶数,运行5个数 [random.randrange(0,11,2) for i in range(5)] [2, 4, 8, 8, 6]
random.sample()
描述:从population样本或集合中随机抽取K个不重复的元素形成新的序列。常用于不重复的随机抽样。返回的是一个新的序列,不会破坏原有序列。要从一个整数区间随机抽取一定数量的整数,请使用sample(range(1000000), k=60)类似的方法,这非常有效和节省空间。如果k大于population的长度,则弹出ValueError异常。
语法:random.sample(population, k)
注意:与random.choices()的区别:一个是选取k次,一个是选取k个,选取k次的相当于选取后又放回,选取k个则选取后不放回。故random.sample()的k值不能超出集群的元素个数。
random.sample(range(1000), k=5) [82, 678, 664, 177, 376] L = [0,1,2,3,4,5] random.sample(L,3) [5, 3, 1] random.sample(L,3) [2, 4, 5]
random.seed()
描述:初始化伪随机数生成器。如果未提供a或者a=None,则使用系统时间为种子。如果a是一个整数,则作为种子。伪随机数生成模块。如果不提供 seed,默认使用系统时间。使用相同的 seed,可以获得完全相同的随机数序列,常用于算法改进测试。
语法:random.seed(a=None, version=2)
# 生成一个随机数迭代器实例,与下列的实例不共享随机状态 a = random.Random() [a.randint(1, 100) for i in range(20)] [97, 91, 63, 88, 82, 6, 80, 59, 40, 96, 64, 6, 68, 49, 65, 50, 58, 5, 31, 60] b = random.Random() [b.randint(1, 100) for i in range(20)] [46, 53, 89, 1, 48, 21, 45, 26, 89, 96, 43, 85, 21, 78, 8, 38, 54, 1, 27, 56] ############################################################################ a = random.Random() # 指定相同的随机种子,共享随机状态 a.seed(1) [a.randint(1, 100) for i in range(20)] [14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4] b =random.Random() # 指定相同的随机种子,共享随机状态 b.seed(1) [b.randint(1, 100) for i in range(20)] [14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 44, 77, 1, 45, 73, 23, 95, 91, 4]
random.shuffle()
描述:用于将一个列表中的元素打乱。只能针对可变的序列,对于不可变序列,请使用下面的sample()方法。
语法:random.shuffle(x)
L = [0,1,2,3,4,5] random.shuffle(L) L [5, 4, 1, 0, 3, 2]
random.uniform()
描述:产生[a,b]范围内一个随机浮点数。uniform()的a,b参数不需要遵循a<=b的规则,即a小b大也可以,此时生成[b,a]范围内的随机浮点数。
语法:random.uniform(x, y)
random.uniform(10, 11) 10.789198208817488
random.triangular()
描述:返回一个low <= N <=high的三角形分布的随机数。参数mode指明众数出现位置。
语法:random.triangular(low, high, mode)
data = [random.triangular(2,4,3) for i in range(20000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.vonmisesvariate()
描述:卡帕分布
语法:vonmisesvariate(mu, kappa)
data = [random.vonmisesvariate(2,2) for i in range(20000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.weibullvariate()
描述:威布尔分布
语法:random.weibullvariate(alpha, beta)
data = [random.weibullvariate(1,2) for i in range(20000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.betavariate()
描述: β分布
语法:random.betavariate(alpha, beta)
data = [random.betavariate(1,2) for i in range(20000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.expovariate()
描述:指数分布
语法:random.expovariate(lambd)
data = [random.expovariate(2) for i in range(50000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.gammavariate()
描述: 伽马分布
语法:random.gammavariate(alpha, beta)
data = [random.gammavariate(2,2) for i in range(50000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.gauss()
描述:高斯分布
语法:random.gauss(mu, sigma)
data = [random.gauss(2,2) for i in range(50000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.lognormvariate()
描述:对数正态分布
语法:random.lognormvariate(mu, sigma)
data = [random.lognormvariate(4,2) for i in range(50000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.normalvariate()
描述: 正态分布
语法:random.normalvariate(mu, sigma)
data = [random.normalvariate(2,4) for i in range(20000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
random.paretovariate()
描述:帕累托分布
语法:random.paretovariate(alpha)
data = [random.paretovariate(4) for i in range(50000)] #直方图 plt.hist(data, bins=100, color="#FF0000", alpha=.7) #密度图 sns.kdeplot(data, shade=True,color="#FF0000")
直方图
密度图
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]