DDR爱好者之家 Design By 杰米
计算Python Numpy向量之间的欧氏距离,已知vec1和vec2是两个Numpy向量,欧氏距离计算如下:
import numpy
dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))
或者直接:
dist = numpy.linalg.norm(vec1 - vec2)
补充知识:Python中计算两个数据点之间的欧式距离,一个点到数据集中其他点的距离之和
如下所示:
计算数两个数据点之间的欧式距离
import numpy as np def ed(m, n): return np.sqrt(np.sum((m - n) ** 2)) i = np.array([1, 1]) j = np.array([3, 3]) distance = ed(i, j) print(distance)
在jupyter 中运输代码输出结果如下:
计算一个点到数据集中其他点的距离之和
from scipy import * import pylab as pl all_points = rand(500, 2) pl.plot(all_points[:, 0], all_points[:, 1], 'b.') pl.show()
在jupyter 中运输代码输出结果如下:
from scipy import * import pylab as pl all_points = rand(500, 2) pl.plot(all_points[:, 0], all_points[:, 1], 'b.') pl.show()
定义函数计算距离
def cost(c, all_points): #指定点,all_points:为集合类的所有点
return sum(sum((c - all_points) ** 2, axis=1) ** 0.5)
以上这篇计算Python Numpy向量之间的欧氏距离实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]