DDR爱好者之家 Design By 杰米

官方文档很全面,搜索功能也很好。但是如果你想单独实现某个功能,根本无从搜寻。于是我写了这个笔记。从功能出发。

两个tensor经过一个layer实例会产生两个输出。

a = Input(shape=(280, 256))
b = Input(shape=(280, 256))
 
lstm = LSTM(32)
encoded_a = lstm(a)
encoded_b = lstm(b)
 
lstm.output

这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出。

 AttributeError: Layer lstm_1 has multiple inbound nodes,
hence the notion of "layer output" is ill-defined.
Use `get_output_at(node_index)` instead.

所以如果想要得到多个输出中的一个:

assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b

补充知识:kears训练中如何实时输出卷积层的结果?

在训练unet模型时,发现预测结果和真实结果几乎完全差距太大,想着打印每层输出的结果查看问题在哪?

但是发现kears只是提供了训练完成后在模型测试时输出每层的函数。并没有提供训练时的函数,同时本着不对原有代码进行太大改动。最后实现了这个方法。

即新建一个输出节点添加到现有的网络结构里面。

#新建一个打印层。
class PrintLayer(Layer):
	#初始化方法,不须改变
 def __init__(self, **kwargs):
  super(PrintLayer, self).__init__(**kwargs)
	#调用该层时执行的方法
 def call(self, x):
  x = tf.Print(x,[x],message="x is: ",summarize=65536)
  #调用tf的Print方法打印tensor方法,第一个参数为输入的x,第二个参数为要输出的参数,summarize参数为输出的元素个数。
  return x;
  #一定要返回tf.Print()函数返回的变量,不要直接使用传入的变量。
 
#接着在网络中引入
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
print11 = PrintLayer()(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(print11)
#PrintLayer层处理的结果一定要在下一层用到,不然不会打印tensor。该结点可以加在任何结点之间。

以上这篇keras 获取某层输出 获取复用层的多次输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米