ckpt转换成SavedModel
convert_ckpt_to_savermodel.py
import tensorflow as tf import sys trained_checkpoint_prefix = sys.argv[1] export_dir = sys.argv[2] graph = tf.Graph() config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True) with tf.compat.v1.Session(graph=graph, config=config) as sess: # Restore from checkpoint loader = tf.compat.v1.train.import_meta_graph(trained_checkpoint_prefix + '.meta') loader.restore(sess, trained_checkpoint_prefix) # Export checkpoint to SavedModel builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables(sess, [tf.saved_model.TRAINING, tf.saved_model.SERVING], strip_default_attrs=True) builder.save()
假设已经生成了ckpt模型
checkpoint hello_model.data-00000-of-00001 hello_model.index hello_model.meta
python ./convert_ckpt_to_savermodel.py hello_model ./save
会在save目录下生成
save
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
补充知识:tensorflow serving模型转换
tf serving是一款灵活的高性能机器学习服务系统,专为生产环境而设计。通过它可以轻松部署新算法和实验,同时保持服务框架和API不变。它提供了与tensorflow模型的即是可用集成,但很容易扩展以便服务其他类型的模型和数据。
tf serving的安装过程这里不多说,大家可以百度。
此处主要介绍tensorflow模型在docker中转换时的修改内容。
修改inception_saved_model.py文件中的内容,主要包括:image_size,NUM_CLASSES,SYNSET_FILE,METADATA_FILE变量的内容,必要时修改model_version,NUM_TOP_CLASSES。
修改inception_model.py文件中的内容,包括从nets文件夹中导入所需网络的信息,修改inference函数中对应的网络名称。
from nets.inception_v1 import inception_v1, inception_v1_arg_scope with slim.arg_scope(inception_v1_arg_scope()): logits, endpoints = inception_v1( images, dropout_keep_prob=0.8, num_classes=num_classes, is_training=for_training, scope=scope)
另,使用CUDA环境时,需要添加环境及bazel编译的配置项
export TF_NEED_CUDA=1
bazel build -c opt --config=cuda tf_models/slim:inception_saved_model
ps,关于gpu的设置如下:
export CUDA_VISIBLE_DEVICES='0,1' #shell环境 import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" #python环境
以上这篇tensorflow转换ckpt为savermodel模型的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]