DDR爱好者之家 Design By 杰米
1 Pytorch以ONNX方式保存模型
def saveONNX(model, filepath): ''' 保存ONNX模型 :param model: 神经网络模型 :param filepath: 文件保存路径 ''' # 神经网络输入数据类型 dummy_input = torch.randn(self.config.BATCH_SIZE, 1, 28, 28, device='cuda') torch.onnx.export(model, dummy_input, filepath, verbose=True)
2 利用TensorRT5中ONNX解析器构建Engine
def ONNX_build_engine(onnx_file_path): ''' 通过加载onnx文件,构建engine :param onnx_file_path: onnx文件路径 :return: engine ''' # 打印日志 G_LOGGER = trt.Logger(trt.Logger.WARNING) with trt.Builder(G_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, G_LOGGER) as parser: builder.max_batch_size = 100 builder.max_workspace_size = 1 << 20 print('Loading ONNX file from path {}...'.format(onnx_file_path)) with open(onnx_file_path, 'rb') as model: print('Beginning ONNX file parsing') parser.parse(model.read()) print('Completed parsing of ONNX file') print('Building an engine from file {}; this may take a while...'.format(onnx_file_path)) engine = builder.build_cuda_engine(network) print("Completed creating Engine") # 保存计划文件 # with open(engine_file_path, "wb") as f: # f.write(engine.serialize()) return engine
3 构建TensorRT运行引擎进行预测
def loadONNX2TensorRT(filepath): ''' 通过onnx文件,构建TensorRT运行引擎 :param filepath: onnx文件路径 ''' # 计算开始时间 Start = time() engine = self.ONNX_build_engine(filepath) # 读取测试集 datas = DataLoaders() test_loader = datas.testDataLoader() img, target = next(iter(test_loader)) img = img.numpy() target = target.numpy() img = img.ravel() context = engine.create_execution_context() output = np.empty((100, 10), dtype=np.float32) # 分配内存 d_input = cuda.mem_alloc(1 * img.size * img.dtype.itemsize) d_output = cuda.mem_alloc(1 * output.size * output.dtype.itemsize) bindings = [int(d_input), int(d_output)] # pycuda操作缓冲区 stream = cuda.Stream() # 将输入数据放入device cuda.memcpy_htod_async(d_input, img, stream) # 执行模型 context.execute_async(100, bindings, stream.handle, None) # 将预测结果从从缓冲区取出 cuda.memcpy_dtoh_async(output, d_output, stream) # 线程同步 stream.synchronize() print("Test Case: " + str(target)) print("Prediction: " + str(np.argmax(output, axis=1))) print("tensorrt time:", time() - Start) del context del engine
补充知识:Pytorch/Caffe可以先转换为ONNX,再转换为TensorRT
近来工作,试图把Pytorch用TensorRT运行。折腾了半天,没有完成。github中的转换代码,只能处理pytorch 0.2.0的功能(也明确表示不维护了)。和同事一起处理了很多例外,还是没有通过。吾以为,实际上即使勉强过了,能不能跑也是问题。
后来有高手建议,先转换为ONNX,再转换为TensorRT。这个思路基本可行。
是不是这样就万事大吉?当然不是,还是有严重问题要解决的。这只是个思路。
以上这篇Pytorch通过保存为ONNX模型转TensorRT5的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]