项目中要对短文本进行相似度估计,word2vec是一个很火的工具。本文就word2vec的训练以及加载进行了总结。
word2vec的原理就不描述了,word2vec词向量工具是由google开发的,输入为文本文档,输出为基于这个文本文档的语料库训练得到的词向量模型。
通过该模型可以对单词的相似度进行量化分析。
word2vec的训练方法有2种,一种是通过word2vec的官方手段,在linux环境下编译并执行。
在github上下载word2vec的安装包,然后make编译。查看demo-word.sh脚本,得到word2vec的执行命令:
./word2vec -train text8 -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
参数解释:
1)-train:需要训练的语料库,text8为语料库文件名
2)-output:输出的词向量文件,vectors.bin为输出词向量文件名,.bin后缀为二进制文件。若要以文档的形式查看词向量文件,需要将-binary参数的值由1改为0
3)-cbow:是否使用cbow模型进行训练。参数为1表示使用cbow,为0表示不使用cbow
4)-size:词向量的维数,默认为200维。
5)-window:训练过程中截取上下文的窗口大小,默认为8,即考虑一个词前8个和后8个词
6)-negative:若参数非0,表明采样随机负采样的方法,负样本子集的规模默认为25。若参数值为0,表示不使用随机负采样模型。使用随机负采样比Hierarchical Softmax模型效率更高。
7)-hs:是否采用基于Hierarchical Softmax的模型。参数为1表示使用,0表示不使用
8)-sample:语料库中的词频阈值参数,词频大于该阈值的词,越容易被采样。默认为e^-4.
9)-threads:开启的线程数目,默认为20.
10)-binary:词向量文件的输出形式。1表示输出二进制文件,0表示输出文本文件
11)-iter:训练的迭代次数。一定范围内,次数越高,训练得到的参数会更准确。默认值为15次.
./word2vec -train mytext.txt -output vectors.txt -cbow 1 -size 200 -window 5 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 0 -iter 30
示例为训练一个名mytext.txt的文档。设置输出词向量的格式为.txt文本文档,所以还需要将-binary参数设置为0.
训练模型采用基于随机负采样的cbow模型。由于短文本字数极为有限,所以-window参数设置为5,设置词向量的维数
为200,为了使得到的参数更准确,将迭代次数增加至30.其他参数使用默认值。
训练以后得到一个txt文本,该文本的内容为:每行一个单词,单词后面是对应的词向量。
gensim加载词向量:
保存词向量模型到pkl中(注意:这里是对词向量模型进行构建)
from gensim.models import KeyedVectors if not os.path.exists(pkl_path): # 如果pickle模型不存在,则构建一个 print '词向量模型不存在,开始构建词向量模型...' Word2Vec = KeyedVectors.load_word2vec_format(vecs_path, binary=False) # 加载词向量模型 f = file(pkl_path, 'wb') pickle.dump(Word2Vec, f, True) f.close() print '词向量模型构建完毕...' f= file(pkl_path, 'rb')# 打开pkl文件 word2vec=pickle.load(f)# 载入pkl
第二种方法是使用gensim模块训练词向量:
from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence try: import cPickle as pickle except ImportError: import pickle sentences = LineSentence(path)# path为要训练的txt的路径 # 对sentences表示的语料库进行训练,训练200维的词向量,窗口大小设置为5,最小词频设置为5 model = Word2Vec(sentences, size=200, window=5, min_count=5) model.save(model_path)#model_path为模型路径。保存模型,通常采用pkl形式保存,以便下次直接加载即可 # 加载模型 model = Word2Vec.load(model_path)
完整的训练,加载通常采用如下方式:
if not os.path.exists(model_path): sentences = LineSentence(path) model = Word2Vec(sentences, size=200, window=5, min_count=5) model.save(model_path) model = Word2Vec.load(model_path)
这样一来,就可以通过pkl化的词向量模型进行读取了。pkl的目的是为了保存程序中变量的状态,以便下次直接访问,
不必重新训练模型。
详细内容间gensim官方库
https://radimrehurek.com/gensim/models/word2vec.html
以上这篇在python下实现word2vec词向量训练与加载实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]