DDR爱好者之家 Design By 杰米
1 predict()方法
当使用predict()方法进行预测时,返回值是数值,表示样本属于每一个类别的概率,我们可以使用numpy.argmax()方法找到样本以最大概率所属的类别作为样本的预测标签。
2 predict_classes()方法
当使用predict_classes()方法进行预测时,返回的是类别的索引,即该样本所属的类别标签。以卷积神经网络中的图片分类为例说明,代码如下:
补充知识:keras中model.evaluate、model.predict和model.predict_classes的区别
1、model.evaluate 用于评估您训练的模型。它的输出是model的acc和loss,而不是对输入数据的预测。
2、model.predict 实际预测,输入为test sample,输出为label。
3、在keras中有两个预测函数model.predict_classes(test) 和model.predict(test)。如果标签经过了one-hot编码,如[1,2,3,4,5]是标签类别,经编码后为[1 0 0 0 0],[0 1 0 0 0]…[0 0 0 0 1]。
model.predict_classes(test)预测的是类别,打印出来的值就是类别号。并且只能用于序列模型来预测,不能用于函数式模型。
而model.predict(test)输出的还是5个编码值,要经过argmax(predict_test,axis=1)转化为类别号。
以上这篇对Keras中predict()方法和predict_classes()方法的区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2025年01月10日
2025年01月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]