虽然设计模式与语言无关,但这并不意味着每一个模式都能在每一门语言中使用。《设计模式:可复用面向对象软件的基础》一书中有 23 个模式,其中有 16 个在动态语言中“不见了,或者简化了”。
1、策略模式概述
策略模式:定义一系列算法,把它们一一封装起来,并且使它们之间可以相互替换。此模式让算法的变化不会影响到使用算法的客户。
电商领域有个使用“策略”模式的经典案例,即根据客户的属性或订单中的商品计算折扣。
假如一个网店制定了下述折扣规则。
- 有 1000 或以上积分的顾客,每个订单享 5% 折扣。
- 同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。
- 订单中的不同商品达到 10 个或以上,享 7% 折扣。
简单起见,我们假定一个订单一次只能享用一个折扣。
UML类图如下:
Promotion 抽象类提供了不同算法的公共接口,fidelityPromo、BulkPromo 和 LargeOrderPromo 三个子类实现具体的“策略”,具体策略由上下文类的客户选择。
在这个示例中,实例化订单(Order 类)之前,系统会以某种方式选择一种促销折扣策略,然后把它传给 Order 构造方法。具体怎么选择策略,不在这个模式的职责范围内。(选择策略可以使用工厂模式。)
2、传统方法实现策略模式:
from abc import ABC, abstractmethod from collections import namedtuple Customer = namedtuple('Customer', 'name fidelity') class LineItem: """订单中单个商品的数量和单价""" def __init__(self, product, quantity, price): self.product = product self.quantity = quantity self.price = price def total(self): return self.price * self.quantity class Order: """订单""" def __init__(self, customer, cart, promotion=None): self.customer = customer self.cart = list(cart) self.promotion = promotion def total(self): if not hasattr(self, '__total'): self.__total = sum(item.total() for item in self.cart) return self.__total def due(self): if self.promotion is None: discount = 0 else: discount = self.promotion.discount(self) return self.total() - discount def __repr__(self): fmt = '<订单 总价: {:.2f} 实付: {:.2f}>' return fmt.format(self.total(), self.due()) class Promotion(ABC): # 策略:抽象基类 @abstractmethod def discount(self, order): """返回折扣金额(正值)""" class FidelityPromo(Promotion): # 第一个具体策略 """为积分为1000或以上的顾客提供5%折扣""" def discount(self, order): return order.total() * 0.05 if order.customer.fidelity >= 1000 else 0 class BulkItemPromo(Promotion): # 第二个具体策略 """单个商品为20个或以上时提供10%折扣""" def discount(self, order): discount = 0 for item in order.cart: if item.quantity >= 20: discount += item.total() * 0.1 return discount class LargeOrderPromo(Promotion): # 第三个具体策略 """订单中的不同商品达到10个或以上时提供7%折扣""" def discount(self, order): distinct_items = {item.product for item in order.cart} if len(distinct_items) >= 10: return order.total() * 0.07 return 0 joe = Customer('John Doe', 0) ann = Customer('Ann Smith', 1100) cart = [LineItem('banana', 4, 0.5), LineItem('apple', 10, 1.5), LineItem('watermellon', 5, 5.0)] print('策略一:为积分为1000或以上的顾客提供5%折扣') print(Order(joe, cart, FidelityPromo())) print(Order(ann, cart, FidelityPromo())) banana_cart = [LineItem('banana', 30, 0.5), LineItem('apple', 10, 1.5)] print('策略二:单个商品为20个或以上时提供10%折扣') print(Order(joe, banana_cart, BulkItemPromo())) long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)] print('策略三:订单中的不同商品达到10个或以上时提供7%折扣') print(Order(joe, long_order, LargeOrderPromo())) print(Order(joe, cart, LargeOrderPromo()))
输出:
策略一:为积分为1000或以上的顾客提供5%折扣
<订单 总价: 42.00 实付: 42.00>
<订单 总价: 42.00 实付: 39.90>
策略二:单个商品为20个或以上时提供10%折扣
<订单 总价: 30.00 实付: 28.50>
策略三:订单中的不同商品达到10个或以上时提供7%折扣
<订单 总价: 10.00 实付: 9.30>
<订单 总价: 42.00 实付: 42.00>
3、使用函数实现策略模式
在传统策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,除此之外没有其他任何实例属性。它们看起来像是普通的函数一样。的确如此,在 Python 中,我们可以把具体策略换成了简单的函数,并且去掉策略的抽象类。
from collections import namedtuple Customer = namedtuple('Customer', 'name fidelity') class LineItem: def __init__(self, product, quantity, price): self.product = product self.quantity = quantity self.price = price def total(self): return self.price * self.quantity class Order: def __init__(self, customer, cart, promotion=None): self.customer = customer self.cart = list(cart) self.promotion = promotion def total(self): if not hasattr(self, '__total'): self.__total = sum(item.total() for item in self.cart) return self.__total def due(self): if self.promotion is None: discount = 0 else: discount = self.promotion(self) return self.total() - discount def __repr__(self): fmt = '<订单 总价: {:.2f} 实付: {:.2f}>' return fmt.format(self.total(), self.due()) def fidelity_promo(order): """为积分为1000或以上的顾客提供5%折扣""" return order.total() * .05 if order.customer.fidelity >= 1000 else 0 def bulk_item_promo(order): """单个商品为20个或以上时提供10%折扣""" discount = 0 for item in order.cart: if item.quantity >= 20: discount += item.total() * .1 return discount def large_order_promo(order): """订单中的不同商品达到10个或以上时提供7%折扣""" distinct_items = {item.product for item in order.cart} if len(distinct_items) >= 10: return order.total() * .07 return 0 joe = Customer('John Doe', 0) ann = Customer('Ann Smith', 1100) cart = [LineItem('banana', 4, 0.5), LineItem('apple', 10, 1.5), LineItem('watermellon', 5, 5.0)] print('策略一:为积分为1000或以上的顾客提供5%折扣') print(Order(joe, cart, fidelity_promo)) print(Order(ann, cart, fidelity_promo)) banana_cart = [LineItem('banana', 30, 0.5), LineItem('apple', 10, 1.5)] print('策略二:单个商品为20个或以上时提供10%折扣') print(Order(joe, banana_cart, bulk_item_promo)) long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)] print('策略三:订单中的不同商品达到10个或以上时提供7%折扣') print(Order(joe, long_order, large_order_promo)) print(Order(joe, cart, large_order_promo))
其实只要是支持高阶函数的语言,就可以如此实现,例如 C# 中,可以用委托实现。只是如此实现反而使代码变得复杂不易懂。而 Python 中,函数天然就可以当做参数来传递。
值得注意的是,《设计模式:可复用面向对象软件的基础》一书的作者指出:“策略对象通常是很好的享元。” 享元是可共享的对象,可以同时在多个上下文中使用。共享是推荐的做法,这样不必在每个新的上下文(这里是 Order 实例)中使用相同的策略时不断新建具体策略对象,从而减少消耗。因此,为了避免 [策略模式] 的运行时消耗,可以配合 [享元模式] 一起使用,但这样,代码行数和维护成本会不断攀升。
在复杂的情况下,需要具体策略维护内部状态时,可能需要把“策略”和“享元”模式结合起来。但是,具体策略一般没有内部状态,只是处理上下文中的数据。此时,一定要使用普通的函数,别去编写只有一个方法的类,再去实现另一个类声明的单函数接口。函数比用户定义的类的实例轻量,而且无需使用“享元”模式,因为各个策略函数在 Python 编译模块时只会创建一次。普通的函数也是“可共享的对象,可以同时在多个上下文中使用”。
以上就是详解Python设计模式之策略模式的详细内容,更多关于Python 策略模式的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]