DDR爱好者之家 Design By 杰米
需求
在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类
如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类
想法
- 通过numpy、PIL构造4*4的图像数据集
- 构造自己的数据集类
- 读取数据集对数据集选取减少偏斜
- cnn设计因为特征少,直接1*1卷积层
- 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层
代码
import torch import torchvision import torchvision.transforms as transforms import numpy as np from PIL import Image
构造数据集
import csv import collections import os import shutil def buildDataset(root,dataType,dataSize): """构造数据集 构造的图片存到root/{dataType}Data 图片地址和标签的csv文件存到 root/{dataType}DataInfo.csv Args: root:str 项目目录 dataType:str 'train'或者‘test' dataNum:int 数据大小 Returns: """ dataInfo = [] dataPath = f'{root}/{dataType}Data' if not os.path.exists(dataPath): os.makedirs(dataPath) else: shutil.rmtree(dataPath) os.mkdir(dataPath) for i in range(dataSize): # 创建0,1 数组 imageArray=np.random.randint(0,2,(4,4)) # 计算0,1数量得到标签 allBlackNum = collections.Counter(imageArray.flatten())[0] innerBlackNum = collections.Counter(imageArray[1:3,1:3].flatten())[0] label = 0 if (allBlackNum-innerBlackNum)>innerBlackNum else 1 # 将图片保存 path = f'{dataPath}/{i}.jpg' dataInfo.append([path,label]) im = Image.fromarray(np.uint8(imageArray*255)) im = im.convert('1') im.save(path) # 将图片地址和标签存入csv文件 filePath = f'{root}/{dataType}DataInfo.csv' with open(filePath, 'w') as f: writer = csv.writer(f) writer.writerows(dataInfo)
root=r'/Users/null/Documents/PythonProject/Classifier'
构造训练数据集
buildDataset(root,'train',20000)
构造测试数据集
buildDataset(root,'test',10000)
读取数据集
class MyDataset(torch.utils.data.Dataset): def __init__(self, root, datacsv, transform=None): super(MyDataset, self).__init__() with open(f'{root}/{datacsv}', 'r') as f: imgs = [] # 读取csv信息到imgs列表 for path,label in map(lambda line:line.rstrip().split(','),f): imgs.append((path, int(label))) self.imgs = imgs self.transform = transform if transform is not None else lambda x:x def __getitem__(self, index): path, label = self.imgs[index] img = self.transform(Image.open(path).convert('1')) return img, label def __len__(self): return len(self.imgs)
trainData=MyDataset(root = root,datacsv='trainDataInfo.csv', transform=transforms.ToTensor()) testData=MyDataset(root = root,datacsv='testDataInfo.csv', transform=transforms.ToTensor())
处理数据集使得数据集不偏斜
import itertools def chooseData(dataset,scale): # 将类别为1的排序到前面 dataset.imgs.sort(key=lambda x:x[1],reverse=True) # 获取类别1的数目 ,取scale倍的数组,得数据不那么偏斜 trueNum =collections.Counter(itertools.chain.from_iterable(dataset.imgs))[1] end = min(trueNum*scale,len(dataset)) dataset.imgs=dataset.imgs[:end] scale = 4 chooseData(trainData,scale) chooseData(testData,scale) len(trainData),len(testData) (2250, 1122)
import torch.utils.data as Data # 超参数 batchSize = 50 lr = 0.1 numEpochs = 20 trainIter = Data.DataLoader(dataset=trainData, batch_size=batchSize, shuffle=True) testIter = Data.DataLoader(dataset=testData, batch_size=batchSize)
定义模型
from torch import nn from torch.autograd import Variable from torch.nn import Module,Linear,Sequential,Conv2d,ReLU,ConstantPad2d import torch.nn.functional as F class Net(Module): def __init__(self): super(Net, self).__init__() self.cnnLayers = Sequential( # padding添加1层常数1,设定卷积核为2*2 ConstantPad2d(1, 1), Conv2d(1, 1, kernel_size=2, stride=2,bias=True) ) self.linearLayers = Sequential( Linear(9, 2) ) def forward(self, x): x = self.cnnLayers(x) x = x.view(x.shape[0], -1) x = self.linearLayers(x) return x class Net2(Module): def __init__(self): super(Net2, self).__init__() self.cnnLayers = Sequential( Conv2d(1, 1, kernel_size=1, stride=1,bias=True) ) self.linearLayers = Sequential( ReLU(), Linear(16, 2) ) def forward(self, x): x = self.cnnLayers(x) x = x.view(x.shape[0], -1) x = self.linearLayers(x) return x
定义损失函数
# 交叉熵损失函数 loss = nn.CrossEntropyLoss() loss2 = nn.CrossEntropyLoss()
定义优化算法
net = Net() optimizer = torch.optim.SGD(net.parameters(),lr = lr)
net2 = Net2() optimizer2 = torch.optim.SGD(net2.parameters(),lr = lr)
训练模型
# 计算准确率 def evaluateAccuracy(dataIter, net): accSum, n = 0.0, 0 with torch.no_grad(): for X, y in dataIter: accSum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0] return accSum / n
def train(net, trainIter, testIter, loss, numEpochs, batchSize, optimizer): for epoch in range(numEpochs): trainLossSum, trainAccSum, n = 0.0, 0.0, 0 for X,y in trainIter: yHat = net(X) l = loss(yHat,y).sum() optimizer.zero_grad() l.backward() optimizer.step() # 计算训练准确度和loss trainLossSum += l.item() trainAccSum += (yHat.argmax(dim=1) == y).sum().item() n += y.shape[0] # 评估测试准确度 testAcc = evaluateAccuracy(testIter, net) print('epoch {:d}, loss {:.4f}, train acc {:.3f}, test acc {:.3f}'.format(epoch + 1, trainLossSum / n, trainAccSum / n, testAcc))
Net模型训练
train(net, trainIter, testIter, loss, numEpochs, batchSize,optimizer) epoch 1, loss 0.0128, train acc 0.667, test acc 0.667 epoch 2, loss 0.0118, train acc 0.683, test acc 0.760 epoch 3, loss 0.0104, train acc 0.742, test acc 0.807 epoch 4, loss 0.0093, train acc 0.769, test acc 0.772 epoch 5, loss 0.0085, train acc 0.797, test acc 0.745 epoch 6, loss 0.0084, train acc 0.798, test acc 0.807 epoch 7, loss 0.0082, train acc 0.804, test acc 0.816 epoch 8, loss 0.0078, train acc 0.816, test acc 0.812 epoch 9, loss 0.0077, train acc 0.818, test acc 0.817 epoch 10, loss 0.0074, train acc 0.824, test acc 0.826 epoch 11, loss 0.0072, train acc 0.836, test acc 0.819 epoch 12, loss 0.0075, train acc 0.823, test acc 0.829 epoch 13, loss 0.0071, train acc 0.839, test acc 0.797 epoch 14, loss 0.0067, train acc 0.849, test acc 0.824 epoch 15, loss 0.0069, train acc 0.848, test acc 0.843 epoch 16, loss 0.0064, train acc 0.864, test acc 0.851 epoch 17, loss 0.0062, train acc 0.867, test acc 0.780 epoch 18, loss 0.0060, train acc 0.871, test acc 0.864 epoch 19, loss 0.0057, train acc 0.881, test acc 0.890 epoch 20, loss 0.0055, train acc 0.885, test acc 0.897
Net2模型训练
# batchSize = 50 # lr = 0.1 # numEpochs = 15 下得出的结果 train(net2, trainIter, testIter, loss2, numEpochs, batchSize,optimizer2) epoch 1, loss 0.0119, train acc 0.638, test acc 0.676 epoch 2, loss 0.0079, train acc 0.823, test acc 0.986 epoch 3, loss 0.0046, train acc 0.987, test acc 0.977 epoch 4, loss 0.0030, train acc 0.983, test acc 0.973 epoch 5, loss 0.0023, train acc 0.981, test acc 0.976 epoch 6, loss 0.0019, train acc 0.980, test acc 0.988 epoch 7, loss 0.0016, train acc 0.984, test acc 0.984 epoch 8, loss 0.0014, train acc 0.985, test acc 0.986 epoch 9, loss 0.0013, train acc 0.987, test acc 0.992 epoch 10, loss 0.0011, train acc 0.989, test acc 0.993 epoch 11, loss 0.0010, train acc 0.989, test acc 0.996 epoch 12, loss 0.0010, train acc 0.992, test acc 0.994 epoch 13, loss 0.0009, train acc 0.993, test acc 0.994 epoch 14, loss 0.0008, train acc 0.995, test acc 0.996 epoch 15, loss 0.0008, train acc 0.994, test acc 0.998
测试
test = torch.Tensor([[[[0,0,0,0],[0,1,1,0],[0,1,1,0],[0,0,0,0]]], [[[1,1,1,1],[1,0,0,1],[1,0,0,1],[1,1,1,1]]], [[[0,1,0,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]], [[[0,1,1,1],[1,0,0,1],[1,0,0,1],[0,0,0,1]]], [[[0,0,1,1],[1,0,0,1],[1,0,0,1],[1,0,1,0]]], [[[0,0,1,0],[0,1,0,1],[0,0,1,1],[1,0,1,0]]], [[[1,1,1,0],[1,0,0,1],[1,0,1,1],[1,0,1,1]]] ]) target=torch.Tensor([0,1,0,1,1,0,1]) test tensor([[[[0., 0., 0., 0.], [0., 1., 1., 0.], [0., 1., 1., 0.], [0., 0., 0., 0.]]], [[[1., 1., 1., 1.], [1., 0., 0., 1.], [1., 0., 0., 1.], [1., 1., 1., 1.]]], [[[0., 1., 0., 1.], [1., 0., 0., 1.], [1., 0., 0., 1.], [0., 0., 0., 1.]]], [[[0., 1., 1., 1.], [1., 0., 0., 1.], [1., 0., 0., 1.], [0., 0., 0., 1.]]], [[[0., 0., 1., 1.], [1., 0., 0., 1.], [1., 0., 0., 1.], [1., 0., 1., 0.]]], [[[0., 0., 1., 0.], [0., 1., 0., 1.], [0., 0., 1., 1.], [1., 0., 1., 0.]]], [[[1., 1., 1., 0.], [1., 0., 0., 1.], [1., 0., 1., 1.], [1., 0., 1., 1.]]]]) with torch.no_grad(): output = net(test) output2 = net2(test) predictions =output.argmax(dim=1) predictions2 =output2.argmax(dim=1) # 比较结果 print(f'Net测试结果{predictions.eq(target)}') print(f'Net2测试结果{predictions2.eq(target)}') Net测试结果tensor([ True, True, False, True, True, True, True]) Net2测试结果tensor([False, True, False, True, True, False, True])
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2024年11月24日
2024年11月24日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]