keras 模块里面为我们提供了一个预训练好的模型,也就是开箱即可使用的图像识别模型
趁着国庆假期有时间我们就来看看这个预训练模型如何使用吧
可用的模型有哪些?
根据官方文档目前可用的模型大概有如下几个
1、VGG16
2、VGG19
3、ResNet50
4、InceptionResNetV2
5、InceptionV3
它们都被集成到了keras.applications 中
模型文件从哪来
当我们使用了这几个模型时,keras就会去自动下载这些已经训练好的模型保存到我们本机上面
模型文件会被下载到 ~/.keras/models/并在载入模型时自动载入
各个模型的信息:
如何使用预训练模型
使用大致分为三个步骤
1、导入所需模块
2、找一张你想预测的图像将图像转为矩阵
3、将图像矩阵放到模型中进行预测
关于图像矩阵的大小
VGG16,VGG19,ResNet50 默认输入尺寸是224x224
InceptionV3, InceptionResNetV2 模型的默认输入尺寸是299x299
代码demo
假设我现在有一张图片
我需要使用预训练模型来识别它
那我们就按照上面的步骤
第一步导入模块
from keras.applications import VGG16 from keras.applications import VGG19 from keras.applications import ResNet50 from keras.applications import InceptionV3 from keras.applications import InceptionResNetV2
第二步将图像转为矩阵
这里我们需要使用 keras.preprocessing.image 里面 img_to_array 来帮我们转
image = cv2.imread(img) image = cv2.resize(image, self.dim) image = img_to_array(image) image = np.expand_dims(image, axis=0)
第三步 将图像矩阵丢到模型中进行预测
predict = model.predict(preprocess)
decode_predict = decode_predictions(predict)
完整代码如下
1、配置文件
2、获取配置文件的模块
3、图像预测模块
配置文件
[image] image_path=/home/fantasy/Pictures/cat.jpg [model] model=vgg16 [weights] weight=imagenet
获取配置文件的模块
import configparser cf = configparser.ConfigParser() cf.read("configs.cnf") def getOption(section, key): return cf.get(section, key)
图像预测模块以及主要实现
# keras 提供了一些预训练模型,也就是开箱即用的 已经训练好的模型 # 我们可以使用这些预训练模型来进行图像识别,目前的预训练模型大概可以识别2.2w种类型的东西 # 可用的模型: # VGG16 # VGG19 # ResNet50 # InceptionResNetV2 # InceptionV3 # 这些模型被集成到 keras.applications 中 # 当我们使用了这些内置的预训练模型时,模型文件会被下载到 ~/.keras/models/并在载入模型时自动载入 # VGG16,VGG19,ResNet50 默认输入尺寸是224x224 # InceptionV3, InceptionResNetV2 模型的默认输入尺寸是299x299 # 使用内置的预训练模型的步骤 # step1 导入需要的模型 # step2 将需要识别的图像数据转换为矩阵(矩阵的大小需要根据模型的不同而定) # step3 将图像矩阵丢到模型里面进行预测 # ------------------------------------------------------- # step1 import cv2 import numpy as np from getConfig import getOption from keras.applications import VGG16 from keras.applications import VGG19 from keras.applications import ResNet50 from keras.applications import InceptionV3 from keras.applications import InceptionResNetV2 from keras.applications import imagenet_utils from keras.applications.imagenet_utils import decode_predictions from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.applications.inception_v3 import preprocess_input class ImageTools(object): """ 使用keras预训练模型进行图像识别 """ def __init__(self, img, model, w): self.image = img self.model = model self.weight = w # step2 def image2matrix(self, img): """ 将图像转为矩阵 """ image = cv2.imread(img) image = cv2.resize(image, self.dim) image = img_to_array(image) image = np.expand_dims(image, axis=0) return image @property def dim(self): """ 图像矩阵的维度 """ if self.model in ["inceptionv3", "inceptionresnetv2"]: shape = (299, 299) else: shape = (224, 224) return shape @property def Model(self): """ 模型 """ models = { "vgg16": VGG16, "vgg19": VGG19, "resnet50": ResNet50, "inceptionv3": InceptionV3, "inceptionresnetv2": InceptionResNetV2 } return models[self.model] # step3 def prediction(self): """ 预测 """ model = self.Model(weights=self.weight) if self.model in ["inceptionv3", "inceptionresnetv2"]: preprocess = preprocess_input(self.image2matrix(self.image)) else: preprocess = imagenet_utils.preprocess_input(self.image2matrix(self.image)) predict = model.predict(preprocess) decode_predict = decode_predictions(predict) for (item, (imgId, imgLabel, proba)) in enumerate(decode_predict[0]): print("{}, {}, {:.2f}%".format(item + 1, imgLabel, proba * 100)) if __name__ == "__main__": image = getOption("image", "image_path") model = getOption("model", "model") weight = getOption("weights", "weight") tools = ImageTools(image, model, weight) tools.prediction()
运行起来时会将模型文件下载到本机,因此第一次运行会比较久(有可能出现的情况就是下载不了,被墙了)
我们来看看使用VGG16的模型预测输出的效果如何
最后如果大家需要使用其他模型时修改 配置文件的model 即可
以上这篇使用keras内置的模型进行图片预测实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]