DDR爱好者之家 Design By 杰米

图像的二值化或阈值化(Binarization)旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值T,通过T将图像的像素划分为两类:大于T的像素群和小于T的像素群。

灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如公式1所示:

{Y=0,gray<TY=255,gray>=T
{Y=0,gray<TY=255,gray>=T"text-align: center">Python图像阈值化处理及算法比对实例解析

二进制阈值化

该方法先要选定一个特定的阈值量,比如127

1) 大于等于127的像素点的灰度值设定为最大值

2) 灰度值小于127的像素点的灰度值设置为0

例如: 156->255 89->0

关键字为cv2.THRESH_BINARY,完整代码如下

import cv2
def test22():
  src = cv2.imread("rose.jpg")
  # 灰度图片转换
  GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
  # 二进制阈值化处理
  r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY)
  # 显示图像
  cv2.imshow("src", src)
  cv2.imshow("result", b)

  if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
test22()

效果如下:

Python图像阈值化处理及算法比对实例解析

反二进制阈值化

该方法与二进制阈值化方法相似,先要选定一个特定的灰度值作为阈值,比如127

1) 大于127的像素点的灰度值设定为0

2) 小于该阈值的灰度值设定为255

例如:156->0 89->255

关键字为cv2.THRESH_BINARY_INV

代码如下:

import cv2
def test22():
  src = cv2.imread("rose.jpg")
  # 灰度图片转换
  GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
  # 二进制阈值化处理
  r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY_INV)
  # 显示图像
  cv2.imshow("src", src)
  cv2.imshow("result", b)

  if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
test22()

效果如下:

Python图像阈值化处理及算法比对实例解析

截断阈值化

该方法需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。

1) 大于等于127像素点的灰度值设定为该阈值127

2) 小于该阈值的灰度值不变

例如: 163-> 127 89->89

关键字cv2.THRESH_TRUNC,完整代码如下

import cv2
def test22():
  src = cv2.imread("rose.jpg")
  # 灰度图片转换
  GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
  # 二进制阈值化处理
  r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TRUNC)
  # 显示图像
  cv2.imshow("src", src)
  cv2.imshow("result", b)

  if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
test22()

效果如下:

Python图像阈值化处理及算法比对实例解析

反阈值化为0

该方法先选定一个阈值,比如127

(1) 大于等于阈值127的像素点变为0
(2) 小于该阈值的像素点值保持不变

例如: 128->0 89->89

关键字为cv2.THRESH_TOZERO_INV,完整代码如下:

import cv2
def test22():
  src = cv2.imread("rose.jpg")
  # 灰度图片转换
  GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
  # 二进制阈值化处理
  r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO_INV)
  # 显示图像
  cv2.imshow("src", src)
  cv2.imshow("result", b)
  if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
test22()

效果如下:

Python图像阈值化处理及算法比对实例解析

阈值为0

该方法先选定一个阈值,比如127

(1) 大于等于阈值127的像素点,值保持不变

(2) 小于该阈值的像素点值设置为0

例如: 163->163 102->0

关键字为cv2.THRESH_TOZERO,完整代码如下:

import cv2
def test22():
  src = cv2.imread("rose.jpg")
  # 灰度图片转换
  GrayImage = cv2.cvtColor(src, cv2.COLOR_BGR2BGRA)
  # 二进制阈值化处理
  r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)
  # 显示图像
  cv2.imshow("src", src)
  cv2.imshow("result", b)

  if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
test22()

效果如下:

Python图像阈值化处理及算法比对实例解析

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。