我们可以使用tf.shape()获取某张量的形状张量。
import tensorflow as tf x = tf.reshape(tf.range(1000), [10, 10, 10]) sess = tf.Session() sess.run(tf.shape(x)) Out[1]: array([10, 10, 10])
我们可以使用tf.shape()在计算图中确定改变张量的形状。
high = tf.shape(x)[0] // 2 width = tf.shape(x)[1] * 2 x_reshape = tf.reshape(x, [high, width, -1]) sess.run(tf.shape(x_reshape)) Out: array([ 5, 20, 10])
我们可以使用tf.shape_n()在计算图中得到若干个张量的形状。
y = tf.reshape(tf.range(504), [7,8,9]) sess.run(tf.shape_n([x, y])) Out: [array([10, 10, 10]), array([7, 8, 9])]
我们可以使用tf.size()获取张量的元素个数。
sess.run([tf.size(x), tf.size(y)])
Out: [1000, 504]
tensor.get_shape()或者tensor.shape是无法在计算图中用于确定张量的形状。
In [20]: x.get_shape() Out[20]: TensorShape([Dimension(10), Dimension(10), Dimension(10)]) In [21]: x.get_shape()[0] Out[21]: Dimension(10) In [22]: type(x.get_shape()[0]) Out[22]: tensorflow.python.framework.tensor_shape.Dimension In [23]: x.get_shape() Out[23]: TensorShape([Dimension(10), Dimension(10), Dimension(10)]) In [24]: sess.run(x.get_shape()) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn) 299 self._unique_fetches.append(ops.get_default_graph().as_graph_element( --> 300 fetch, allow_tensor=True, allow_operation=True)) 301 except TypeError as e: ~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation) 3477 with self._lock: -> 3478 return self._as_graph_element_locked(obj, allow_tensor, allow_operation) 3479 ~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation) 3566 raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__, -> 3567 types_str)) 3568 TypeError: Can not convert a TensorShapeV1 into a Tensor or Operation. During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) <ipython-input-24-de007c69e003> in <module> ----> 1 sess.run(x.get_shape()) ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata) 927 try: 928 result = self._run(None, fetches, feed_dict, options_ptr, --> 929 run_metadata_ptr) 930 if run_metadata: 931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 1135 # Create a fetch handler to take care of the structure of fetches. 1136 fetch_handler = _FetchHandler( -> 1137 self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles) 1138 1139 # Run request and get response. ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles) 469 """ 470 with graph.as_default(): --> 471 self._fetch_mapper = _FetchMapper.for_fetch(fetches) 472 self._fetches = [] 473 self._targets = [] ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch) 269 if isinstance(fetch, tensor_type): 270 fetches, contraction_fn = fetch_fn(fetch) --> 271 return _ElementFetchMapper(fetches, contraction_fn) 272 # Did not find anything. 273 raise TypeError('Fetch argument %r has invalid type %r' % (fetch, ~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn) 302 raise TypeError('Fetch argument %r has invalid type %r, ' 303 'must be a string or Tensor. (%s)' % --> 304 (fetch, type(fetch), str(e))) 305 except ValueError as e: 306 raise ValueError('Fetch argument %r cannot be interpreted as a ' TypeError: Fetch argument TensorShape([Dimension(10), Dimension(10), Dimension(10)]) has invalid type <class 'tensorflow.python.framework.tensor_shape.TensorShapeV1'>, must be a string or Tensor. (Can not convert a TensorShapeV1 into a Tensor or Operation.)
我们可以使用tf.rank()来确定张量的秩。tf.rank()会返回一个代表张量秩的张量,可直接在计算图中使用。
In [25]: tf.rank(x) Out[25]: <tf.Tensor 'Rank:0' shape=() dtype=int32> In [26]: sess.run(tf.rank(x)) Out[26]: 3
补充知识:tensorflow循环改变tensor的值
使用tf.concat()实现4维tensor的循环赋值
alist=[[[[1,1,1],[2,2,2],[3,3,3]],[[4,4,4],[5,5,5],[6,6,6]]],[[[7,7,7],[8,8,8],[9,9,9]],[[10,10,10],[11,11,11],[12,12,12]]]] #2,2,3,3-n,c,h,w kenel=(np.asarray(alist)*2).tolist() print(kenel) inputs=tf.constant(alist,dtype=tf.float32) kenel=tf.constant(kenel,dtype=tf.float32) inputs=tf.transpose(inputs,[0,2,3,1]) #n,h,w,c kenel=tf.transpose(kenel,[0,2,3,1]) #n,h,w,c uints=inputs.get_shape() h=int(uints[1]) w=int(uints[2]) encoder_output=[] for b in range(int(uints[0])): encoder_output_c=[] for c in range(int(uints[-1])): one_channel_in = inputs[b, :, :, c] one_channel_in = tf.reshape(one_channel_in, [1, h, w, 1]) one_channel_kernel = kenel[b, :, :, c] one_channel_kernel = tf.reshape(one_channel_kernel, [h, w, 1, 1]) encoder_output_cc = tf.nn.conv2d(input=one_channel_in, filter=one_channel_kernel, strides=[1, 1, 1, 1], padding="SAME") if c==0: encoder_output_c=encoder_output_cc else: encoder_output_c=tf.concat([encoder_output_c,encoder_output_cc],axis=3) if b==0: encoder_output=encoder_output_c else: encoder_output = tf.concat([encoder_output, encoder_output_c], axis=0) with tf.Session() as sess: print(sess.run(tf.transpose(encoder_output,[0,3,1,2]))) print(encoder_output.get_shape())
输出:
[[[[ 32. 48. 32.] [ 56. 84. 56.] [ 32. 48. 32.]] [[ 200. 300. 200.] [ 308. 462. 308.] [ 200. 300. 200.]]] [[[ 512. 768. 512.] [ 776. 1164. 776.] [ 512. 768. 512.]] [[ 968. 1452. 968.] [1460. 2190. 1460.] [ 968. 1452. 968.]]]] (2, 3, 3, 2)
以上这篇TensorFlow中如何确定张量的形状实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]