DDR爱好者之家 Design By 杰米

环境:Python+keras,后端为Tensorflow

训练集:MNIST

对于如何训练一个识别手写数字的神经网络,网上资源十分丰富,并且能达到相当高的精度。但是很少有人涉及到如何将图片输入到网络中并让已经训练好的模型惊醒识别,下面来说说实现方法及注意事项。

首先import相关库,这里就不说了。

然后需要将训练好的模型导入,可通过该语句实现:

model = load_model('cnn_model_2.h5') (cnn_model_2.h5替换为你的模型名)

之后是导入图片,需要的格式为28*28。可用opencv导入:

img = cv2.imread('temp3.png', 0) (temp3.png替换为你手写的图片)

然后reshape一下以符合模型的输入要求:

img = (img.reshape(1,1,28,28)).astype("float32")/255

之后就可以用模型识别了:

predict = model.predict_classes(img)

最后print一下predict即可。

下面划重点:因为MNIST使用的是黑底白字的图片,所以你自己手写数字的时候一定要注意把得到的图片也改成黑底白字的,否则会识别错(至少我得到的结论是这样的 ,之前用白底黑字的图总是识别出错)

源码一览:

import cv2
import numpy as np
from keras.models import load_model
model = load_model('cnn_model_2.h5')

image = cv2.imread('temp3.png', 0)
img = cv2.imread('temp3.png', 0)

img = (img.reshape(1,1,28,28)).astype("float32")/255
predict = model.predict_classes(img)
print ('识别为:')
print (predict)

cv2.imshow("Image1", image)
cv2.waitKey(0)

效果图:

使用已经得到的keras模型识别自己手写的数字方式

补充知识:keras编写自定义的层

写在前面的话

keras已经有很多封装好的库供我们调用,但是有些时候我们需要的操作keras并没有,这时就需要学会自定义keras层了

1.Lambda

这个东西很方便,但是只能完成简单、无状态的自定义操作,而不能建立含有可训练权重的自定义层。

from keras.layers import Input,Lambda
from keras import Model
import tensorflow as tf

input=Input(shape=(224,224,3))
input.shape #Input第一个维度为batchsize维度
output=Lambda(lambda x: x[...,1])(input) #取最后一个维度的数据,...表示前面所有的维度
Model=Model(inputs=input,outputs=output)
Model.output

2.keras_custom

学习自keras中文文档

2.自定义keras层(带有可训练权重)
① build:定义权重,且self.build=True,可以通过迪奥哟经super([layer],self).build()完成
② call:功能逻辑实现
③ compute_output_shape:计算输出张量的shape

import keras.backend as K
from keras.engine.topology import Layer #这里的Layer是一个父类,下面的MyLayer将会继承Layer 

class MyLayer(Layer): #自定义一个keras层类
 def __init__(self,output_dim,**kwargs): #初始化方法
  self.output_dim=output_dim
  super(MyLayer,self).__init__(**kwargs) #必须要的初始化自定义层
 def build(self,input_shape): #为Mylayer建立一个可训练的权重
  #通过add_weight的形式来为Mylayer创建权重矩阵
  self.kernel=self.add_weight(name='kernel',
         shape=(input_shape[1],self.output_dim), #这里就是建立一个shape大小的权重矩阵
         initializer='uniform',
         trainable=True)
  super(MyLayer,self).build(input_shape) #一定要用,也可以用下面一行
  #self.build=True
 def call(self,x): #call函数里就是定义了对x张量的计算图,且x只是一个形式,所以不能被事先定义
  return K.dot(x,self.kernel) #矩阵乘法
 def compute_output_shape(self,input_shape):
  return (input_shape[0],self.output_dim) #这里是自己手动计算出来的output_shape
--------------------------------------------------------------------------------
class Mylayer(Layer):
 def __init__(self,output_dim,**kwargs):
  self.output_dim=output_dim
  super(MyLayer,self).__init__(**kwargs)
 def build(self,input_shape):
  assert isinstance(input_shape,list) #判断input_shape是否是list类型的
  self.kernel=self.add_weight(name='kernel',
         shape=(input_shape[0][1],self.output_dim), #input_shape应该长得像[(2,2),(3,3)]
         initializer='uniform',
         trainable=True)
  super(MyLayer,self).build(input_shape)
 def call(self,x):
  assert isinstance(x,list)
  a,b=x #从这里可以看出x应该是一个类似[(2,2),(3,3)]的list,a=(2,2),b=(3,3)
  return [K.dot(a,self.kernel)+b,K.mean(b,axis=-1)]

以上这篇使用已经得到的keras模型识别自己手写的数字方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。