我就废话不多说了,大家还是直接看代码吧~
import tensorflow as tf import sys with tf.variable_scope('ha'): a1 = tf.get_variable('a', shape=[], dtype=tf.int32) with tf.variable_scope('haha'): a2 = tf.get_variable('a', shape=[], dtype=tf.int32) with tf.variable_scope('hahaha'): a3 = tf.get_variable('a', shape=[], dtype=tf.int32) with tf.variable_scope('ha', reuse=True): # 不会创建新的变量 a4 = tf.get_variable('a', shape=[], dtype=tf.int32) sum = a1 + a2 + a3 + a4 fts_s = tf.placeholder(tf.float32, shape=(None, 100), name='fts_s') b = tf.zeros(shape=(tf.shape(fts_s)[0], tf.shape(fts_s)[1])) concat = tf.concat(axis=1, values=[fts_s, b]) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) for var in tf.global_variables(): print var.name import numpy as np ft_sample = np.ones((10, 100)) con_value = sess.run([concat], feed_dict={fts_s: ft_sample}) print con_value[0].shape
results:
ha/a:0
ha/haha/a:0
ha/haha/hahaha/a:0
(10, 200)
小总结:
1: 对于未知的shape, 最常用的就是batch-size 通常是 None 代替, 那么在代码中需要用到实际数据的batch size的时候应该怎么做呢"color: #ff0000">补充知识:tensorflow RNN 使用动态的batch_size
在使用tensorflow实现RNN模型时,需要初始化隐藏状态 如下:
lstm_cell_1 = [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE),output_keep_prob=dropout_keep_prob) for _ in range(NUM_LAYERS)] cell_1 = tf.nn.rnn_cell.MultiRNNCell(lstm_cell_1) self.init_state_1 = cell_1.zero_state(self.batch_size,tf.float32)
如果我们直接使用超参数batch_size初始化 在使用模型预测的结果时会很麻烦。我们可以使用动态的batch_size,就是将batch_size作为一个placeholder,在运行时,将batch_size作为输入输入就可以实现根据数据量的大小使用不同的batch_size。
代码实现如下:
self.batch_size = tf.placeholder(tf.int32,[],name='batch_size')
self.state = cell.zero_state(self.batch_size,tf.float32)
以上这篇tensorflow 动态获取 BatchSzie 的大小实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]