DDR爱好者之家 Design By 杰米

我就废话不多说了,大家还是直接看代码吧~

import os 
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" 
os.environ["CUDA_VISIBLE_DEVICES"]=""
import sys
import gc
import time
import cv2
import random
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm

from random_eraser import get_random_eraser
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

datagen = ImageDataGenerator(
  rotation_range=20,   #旋转
  width_shift_range=0.1,  #水平位置平移
#   height_shift_range=0.2,  #上下位置平移
  shear_range=0.5,    #错切变换,让所有点的x坐标(或者y坐标)保持不变,而对应的y坐标(或者x坐标)则按比例发生平移
  zoom_range=[0.9,0.9],  # 单方向缩放,当一个数值时两个方向等比例缩放,参数为list时长宽不同程度缩放。参数大于0小于1时,执行的是放大操作,当参数大于1时,执行的是缩小操作。
  channel_shift_range = 40, #偏移通道数值,改变图片颜色,越大颜色越深
  horizontal_flip=True,  #水平翻转,垂直翻转vertical_flip
  fill_mode='nearest',   #操作导致图像缺失时填充方式。“constant”、“nearest”(默认)、“reflect”和“wrap”
  preprocessing_function = get_random_eraser(p=0.7,v_l=0,v_h=255,s_l=0.01,s_h=0.03,r_1=1,r_2=1.5,pixel_level=True)
  )

# train_generator = datagen.flow_from_directory(
#       'base/Images/',
#       save_to_dir = 'base/fake/',
#       batch_size=1
#       )
# for i in range(5):
#  train_generator.next()

# !
# df_train = pd.read_csv('base/Annotations/label.csv', header=None)
# df_train.columns = ['image_id', 'class', 'label']
# classes = ['collar_design_labels', 'neckline_design_labels', 'skirt_length_labels', 
#   'sleeve_length_labels', 'neck_design_labels', 'coat_length_labels', 'lapel_design_labels', 
#   'pant_length_labels']
# !

# classes = ['collar_design_labels']

# !
# for i in range(len(classes)):
#  gc.enable()

# #  单个分类
#  cur_class = classes[i]
#  df_load = df_train[(df_train['class'] == cur_class)].copy()
#  df_load.reset_index(inplace=True)
#  del df_load['index']

# #  print(cur_class)

# #  加载数据和label
#  n = len(df_load)
# #  n_class = len(df_load['label'][0])
# #  width = 256

# #  X = np.zeros((n,width, width, 3), dtype=np.uint8)
# #  y = np.zeros((n, n_class), dtype=np.uint8)

#  print(f'starting load trainset {cur_class} {n}')
#  sys.stdout.flush()
#  for i in tqdm(range(n)):
# #   tmp_label = df_load['label'][i]
#   img = load_img('base/{0}'.format(df_load['image_id'][i]))
#   x = img_to_array(img)
#   x = x.reshape((1,) + x.shape)
#   m=0
#   for batch in datagen.flow(x,batch_size=1):
# #    plt.imshow(array_to_img(batch[0]))
# #    print(batch)
#    array_to_img(batch[0]).save(f'base/fake/{format(df_load["image_id"][i])}-{m}.jpg')
#    m+=1
#    if m>3:
#     break
#  gc.collect()
# !  

img = load_img('base/Images/collar_design_labels/2f639f11de22076ead5fe1258eae024d.jpg')
plt.figure()
plt.imshow(img)
x = img_to_array(img)

x = x.reshape((1,) + x.shape)

i = 0
for batch in datagen.flow(x,batch_size=5):
 plt.figure()
 plt.imshow(array_to_img(batch[0]))
#  print(len(batch))
 i += 1
 if i >0:
  break
#多输入,设置随机种子
# Define the image transformations here
gen = ImageDataGenerator(horizontal_flip = True,
       vertical_flip = True,
       width_shift_range = 0.1,
       height_shift_range = 0.1,
       zoom_range = 0.1,
       rotation_range = 40)

# Here is the function that merges our two generators
# We use the exact same generator with the same random seed for both the y and angle arrays
def gen_flow_for_two_inputs(X1, X2, y):
 genX1 = gen.flow(X1,y, batch_size=batch_size,seed=666)
 genX2 = gen.flow(X1,X2, batch_size=batch_size,seed=666)
 while True:
   X1i = genX1.next()
   X2i = genX2.next()
   #Assert arrays are equal - this was for peace of mind, but slows down training
   #np.testing.assert_array_equal(X1i[0],X2i[0])
   yield [X1i[0], X2i[1]], X1i[1]
#手动构造,直接输出多label
generator = ImageDataGenerator(rotation_range=5.,
        width_shift_range=0.1, 
        height_shift_range=0.1, 
        horizontal_flip=True, 
        vertical_flip=True)

def generate_data_generator(generator, X, Y1, Y2):
 genX = generator.flow(X, seed=7)
 genY1 = generator.flow(Y1, seed=7)
 while True:
   Xi = genX.next()
   Yi1 = genY1.next()
   Yi2 = function(Y2)
   yield Xi, [Yi1, Yi2]
model.fit_generator(generate_data_generator(generator, X, Y1, Y2),
    epochs=epochs)
def batch_generator(generator,X,Y):
 Xgen = generator.flow(X)
 while True:
  yield Xgen.next(),Y
h = model.fit_generator(batch_generator(datagen, X_all, y_all), 
       steps_per_epoch=len(X_all)//32+1,
       epochs=80,workers=3,
       callbacks=[EarlyStopping(patience=3), checkpointer,ReduceLROnPlateau(monitor='val_loss',factor=0.5,patience=1)], 
       validation_data=(X_val,y_val))

补充知识:读取图片成numpy数组,裁剪并保存 和 数据增强(ImageDataGenerator)

我就废话不多说了,大家还是直接看代码吧~

from PIL import Image
import numpy as np
from PIL import Image
from keras.preprocessing import image
import matplotlib.pyplot as plt
import os
import cv2
# from scipy.misc import toimage
import matplotlib
# 生成图片地址和对应标签
file_dir = '../train/'
image_list = []
label_list = []
cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)]
for name in cate:
 temp = name.split('/')
 path = '../train_new/' + temp[-1]
 isExists = os.path.exists(path)
 if not isExists:
  os.makedirs(path) # 目录不存在则创建
 class_path = name + "/"

 for file in os.listdir(class_path):
  print(file)
  img_obj = Image.open(class_path + file) # 读取图片
  img_array = np.array(img_obj)
  resized = cv2.resize(img_array, (256, 256)) # 裁剪
  resized = resized.astype('float32')
  resized /= 255.
  # plt.imshow(resized)
  # plt.show()
  save_path = path + '/' + file
  matplotlib.image.imsave(save_path, resized) # 保存

keras之数据增强

from PIL import Image
import numpy as np
from PIL import Image
from keras.preprocessing import image
import os
import cv2
# 生成图片地址和对应标签
file_dir = '../train/'

label_list = []
cate = [file_dir + x for x in os.listdir(file_dir) if os.path.isdir(file_dir + x)]
for name in cate:
 image_list = []
 class_path = name + "/"
 for file in os.listdir(class_path):
  image_list.append(class_path + file)
 batch_size = 64
 if len(image_list) < 10000:
  num = int(10000 / len(image_list))
 else:
  num = 0
 # 设置生成器参数
 datagen = image.ImageDataGenerator(fill_mode='wrap', # 填充模式
          rotation_range=40, # 指定旋转角度范围
          width_shift_range=0.2, # 水平位置平移
          height_shift_range=0.2, # 上下位置平移
          horizontal_flip=True, # 随机对图片执行水平翻转操作
          vertical_flip=True, # 对图片执行上下翻转操作
          shear_range=0.2,
          rescale=1./255, # 缩放
          data_format='channels_last')
 if num > 0:
  temp = name.split('/')
  path = '../train_datage/' + temp[-1]
  isExists = os.path.exists(path)
  if not isExists:
   os.makedirs(path)

  for image_path in image_list:
   i = 1
   img_obj = Image.open(image_path) # 读取图片
   img_array = np.array(img_obj)
   x = img_array.reshape((1,) + img_array.shape)  #要求为4维
   name_image = image_path.split('/')
   print(name_image)
   for batch in datagen.flow(x,
        batch_size=1,
        save_to_dir=path,
        save_prefix=name_image[-1][:-4] + '_',
        save_format='jpg'):
    i += 1
    if i > num:
     break

以上这篇Keras 数据增强ImageDataGenerator多输入多输出实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。