DDR爱好者之家 Design By 杰米

最近邻:

import cv2
import numpy as np
def function(img):
 height,width,channels =img.shape
 emptyImage=np.zeros((2048,2048,channels),np.uint8)
 sh=2048/height
 sw=2048/width
 for i in range(2048):
  for j in range(2048):
   x=int(i/sh)
   y=int(j/sw)
   emptyImage[i,j]=img[x,y]
 return emptyImage
 
img=cv2.imread("e:\\lena.bmp")
zoom=function(img)
cv2.imshow("nearest neighbor",zoom)
cv2.imshow("image",img)
cv2.waitKey(0)

双线性:

import cv2
import numpy as np
import math
def function(img,m,n):
 height,width,channels =img.shape
 emptyImage=np.zeros((m,n,channels),np.uint8)
 value=[0,0,0]
 sh=m/height
 sw=n/width
 for i in range(m):
  for j in range(n):
   x = i/sh
   y = j/sw
   p=(i+0.0)/sh-x
   q=(j+0.0)/sw-y
   x=int(x)-1
   y=int(y)-1
   for k in range(3):
    if x+1<m and y+1<n:
     value[k]=int(img[x,y][k]*(1-p)*(1-q)+img[x,y+1][k]*q*(1-p)+img[x+1,y][k]*(1-q)*p+img[x+1,y+1][k]*p*q)
   emptyImage[i, j] = (value[0], value[1], value[2])
 return emptyImage
 
img=cv2.imread("e:\\lena.bmp")
zoom=function(img,2048,2048)
cv2.imshow("Bilinear Interpolation",zoom)
cv2.imshow("image",img)
cv2.waitKey(0)

双三次:

import cv2
import numpy as np
import math
 
def S(x):
 x = np.abs(x)
 if 0 <= x < 1:
  return 1 - 2 * x * x + x * x * x
 if 1 <= x < 2:
  return 4 - 8 * x + 5 * x * x - x * x * x
 else:
  return 0
def function(img,m,n):
 height,width,channels =img.shape
 emptyImage=np.zeros((m,n,channels),np.uint8)
 sh=m/height
 sw=n/width
 for i in range(m):
  for j in range(n):
   x = i/sh
   y = j/sw
   p=(i+0.0)/sh-x
   q=(j+0.0)/sw-y
   x=int(x)-2
   y=int(y)-2
   A = np.array([
    [S(1 + p), S(p), S(1 - p), S(2 - p)]
   ])
   if x>=m-3:
    m-1
   if y>=n-3:
    n-1
   if x>=1 and x<=(m-3) and y>=1 and y<=(n-3):
    B = np.array([
     [img[x-1, y-1], img[x-1, y],
      img[x-1, y+1],
      img[x-1, y+1]],
     [img[x, y-1], img[x, y],
      img[x, y+1], img[x, y+2]],
     [img[x+1, y-1], img[x+1, y],
      img[x+1, y+1], img[x+1, y+2]],
     [img[x+2, y-1], img[x+2, y],
      img[x+2, y+1], img[x+2, y+1]],
 
     ])
    C = np.array([
     [S(1 + q)],
     [S(q)],
     [S(1 - q)],
     [S(2 - q)]
    ])
    blue = np.dot(np.dot(A, B[:, :, 0]), C)[0, 0]
    green = np.dot(np.dot(A, B[:, :, 1]), C)[0, 0]
    red = np.dot(np.dot(A, B[:, :, 2]), C)[0, 0]
 
    # ajust the value to be in [0,255]
    def adjust(value):
     if value > 255:
      value = 255
     elif value < 0:
      value = 0
     return value
 
    blue = adjust(blue)
    green = adjust(green)
    red = adjust(red)
    emptyImage[i, j] = np.array([blue, green, red], dtype=np.uint8)
 
 return emptyImage
 
img=cv2.imread("e:\\lena.bmp")
zoom=function(img,1024,1024)
cv2.imshow("cubic",zoom)
cv2.imshow("image",img)
cv2.waitKey(0)

补充知识:最邻近插值法(The nearest interpolation)实现图像缩放

也称零阶插值。它输出的像素灰度值就等于距离它映射到的位置最近的输入像素的灰度值。但当图像中包含像素之间灰度级有变化的细微结构时,最邻近算法会在图像中产生人为加工的痕迹。

具体计算方法:对于一个目的坐标,设为 M(x,y),通过向后映射法得到其在原始图像的对应的浮点坐标,设为 m(i+u,j+v),其中 i,j 为正整数,u,v 为大于零小于1的小数(下同),则待求象素灰度的值 f(m)。利用浮点 m 相邻的四个像素求f(m)的值。

function re_im = nearest(im, p, q)
%最邻近插值法,输入目标图像和行缩放、纵缩放倍数
%ziheng 2016.3.27
[m,n] = size(im);
im_R = im(:,:,1);
im_G = im(:,:,2);
im_B = im(:,:,3);
l = round(m*p);
h = round(n*q)/3;
re_R = uint8(zeros(l,h));
re_G = uint8(zeros(l,h));
re_B = uint8(zeros(l,h));
for dstx = 1:l
 for dsty = 1:h
   srcx = max(1,min(m,round(dstx/p)));
   srcy = max(1,min(n/3,round(dsty/q)));
   re_R(dstx,dsty) = im_R(srcx,srcy);
   re_G(dstx,dsty) = im_G(srcx,srcy);
   re_B(dstx,dsty) = im_B(srcx,srcy);
 end
end
re_im = cat(3,re_R,re_G,re_B);
figure,imshow(re_im);

以上这篇python 图像插值 最近邻、双线性、双三次实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。