DDR爱好者之家 Design By 杰米
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码
from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessing.image import load_img, img_to_array import tensorflow as tf from keras import backend as K import os base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None) x = Dropout(0.75)(base_model.output) x = Dense(10, activation='softmax')(x) model = Model(base_model.input, x) model.load_weights('mobilenet_weights.h5') def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): from tensorflow.python.framework.graph_util import convert_variables_to_constants graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names) return frozen_graph output_graph_name = 'NIMA.pb' output_fld = '' #K.set_learning_phase(0) print('input is :', model.input.name) print ('output is:', model.output.name) sess = K.get_session() frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name]) from tensorflow.python.framework import graph_io graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False) print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name))
补充知识:keras h5 model 转换为tflite
在移动端的模型,若选择tensorflow或者keras最基本的就是生成tflite文件,以本文记录一次转换过程。
环境
tensorflow 1.12.0
python 3.6.5
h5 model saved by `model.save('tf.h5')`
直接转换
`tflite_convert --output_file=tf.tflite --keras_model_file=tf.h5` output `TypeError: __init__() missing 2 required positional arguments: 'filters' and 'kernel_size'`
先转成pb再转tflite
``` git clone git@github.com:amir-abdi/keras_to_tensorflow.git cd keras_to_tensorflow python keras_to_tensorflow.py --input_model=path/to/tf.h5 --output_model=path/to/tf.pb tflite_convert --output_file=tf.tflite --graph_def_file=tf.pb --input_arrays=convolution2d_1_input --output_arrays=dense_3/BiasAdd --input_shape=1,3,448,448 ```
参数说明,input_arrays和output_arrays是model的起始输入变量名和结束变量名,input_shape是和input_arrays对应
官网是说需要用到tenorboard来查看,一个比较trick的方法
先执行上面的命令,会报convolution2d_1_input找不到,在堆栈里面有convert_saved_model.py文件,get_tensors_from_tensor_names()这个方法,添加`print(list(tensor_name_to_tensor))` 到 tensor_name_to_tensor 这个变量下面,再执行一遍,会打印出所有tensor的名字,再根据自己的模型很容易就能判断出实际的name。
以上这篇Keras模型转成tensorflow的.pb操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2025年01月08日
2025年01月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]