python一直被病垢运行速度太慢,但是实际上python的执行效率并不慢,慢的是python用的解释器Cpython运行效率太差。
“一行代码让python的运行速度提高100倍”这绝不是哗众取宠的论调。
我们来看一下这个最简单的例子,从1一直累加到1亿。
最原始的代码:
import time def foo(x,y): tt = time.time() s = 0 for i in range(x,y): s += i print('Time used: {} sec'.format(time.time()-tt)) return s print(foo(1,100000000))
结果
Time used: 6.779874801635742 sec 4999999950000000
是不是快了100多倍呢?
那么下面就分享一下“为啥numba库的jit模块那么牛掰?”
NumPy的创始人Travis Oliphant在离开Enthought之后,创建了CONTINUUM,致力于将Python大数据处理方面的应用。最近推出的Numba项目能够将处理NumPy数组的Python函数JIT编译为机器码执行,从而上百倍的提高程序的运算速度。
Numba项目的主页上有Linux下的详细安装步骤。编译LLVM需要花一些时间。
Windows用户可以从Unofficial Windows Binaries for Python Extension Packages下载安装LLVMPy、meta和numba等几个扩展库。
下面我们看一个例子:
import numba as nb from numba import jit @jit('f8(f8[:])') def sum1d(array): s = 0.0 n = array.shape[0] for i in range(n): s += array[i] return s import numpy as np array = np.random.random(10000) %timeit sum1d(array) %timeit np.sum(array) %timeit sum(array) 10000 loops, best of 3: 38.9 us per loop 10000 loops, best of 3: 32.3 us per loop 100 loops, best of 3: 12.4 ms per loop
numba中提供了一些修饰器,它们可以将其修饰的函数JIT编译成机器码函数,并返回一个可在Python中调用机器码的包装对象。为了能将Python函数编译成能高速执行的机器码,我们需要告诉JIT编译器函数的各个参数和返回值的类型。我们可以通过多种方式指定类型信息,在上面的例子中,类型信息由一个字符串'f8(f8[:])'指定。其中'f8'表示8个字节双精度浮点数,括号前面的'f8'表示返回值类型,括号里的表示参数类型,'[:]'表示一维数组。因此整个类型字符串表示sum1d()是一个参数为双精度浮点数的一维数组,返回值是一个双精度浮点数。
内容扩展:
Python运行速度提升
相比较C,C++,python一直被抱怨运行速度很慢,实际上python的执行效率并不慢,而是解释器Cpython运行效率很差。
通过使用numba库的jit可以让python的运行速度提高百倍以上。
同诺简单累加,相乘的例子,可以看出。
#!/usr/bin/env python # encoding: utf-8 ''' @author: Victor @Company:华中科技大学电气学院聚变与等离子研究所 @version: V1.0 @contact: 1650996069@qq.com 2018--2020 @software: PyCharm2018 @file: quickPython3.py @time: 2018/9/21 20:54 @desc:使用numba的jit是python代码运行速度提高100倍左右 ''' '''平常运行''' import time def add(x,y): tt = time.time() s = 0 for i in range(x,y): s += i print('The time used: {} seconds'.format(time.time()-tt)) return s add(1,100000000) ##########结果############### # D:\Python3\python.exe D:/Pycharm2018Works/InsteringPython3/SomeBasics/quickPython3.py # The time used: 6.712835788726807 seconds # Process finished with exit code 0
'''调用numba运行''' import time from numba import jit @jit def add(x,y): tt = time.time() s = 0 for i in range(x,y): s += i print('The time used: {} seconds'.format(time.time()-tt)) return s add(1,100000000) ##########结果############### # D:\Python3\python.exe D:/Pycharm2018Works/InsteringPython3/SomeBasics/quickPython3.py # The time used: 0.06396007537841797 seconds # # Process finished with exit code 0
Numba模块能够将处理NumPy数组的Python函数JIT编译为机器码执行,从而上百倍的提高程序的运算速度。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]