DDR爱好者之家 Design By 杰米

模型经过训练测试之后,我们往往用一两张图对模型预测结果进行分析讨论,那么下面介绍在keras中用已训练的模型经过测试的方法。

下面是以利用预训练的ResNet来展示预测的效果,选了一张狗的图片,是来自一个kaggle比赛的。

预测结果第一个是一种苏格兰品种的狗,我也不知道准不准 == 。

在keras中对单一输入图像进行预测并返回预测结果操作

import numpy as np
from keras.applications.imagenet_utils import decode_predictions
from keras.preprocessing import image
from keras.applications import *
 
import os
 
# 忽略硬件加速的警告信息
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 
file_path = 'images/0a70f64352edfef4c82c22015f0e3a20.jpg'
 
img = image.load_img(file_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
 
model = ResNet50(weights='imagenet')
y = model.predict(x)
# print(np.argmax(y))
print('Predicted:', decode_predictions(y, top=3)[0])

讲几点:

1.输入img转成numpy数组,shape处理成(224,224,3)一般来讲,对于预训练模型是有一个最小的尺寸值,比最小尺寸大就可以了。在ResNet中,尺寸最小大于等于197即可。

2.要对输入shape扩维变成(None,224,224,3),第一个None是batches,模型并不知道你输入的batches是多少,但是维度必须和ResNet的输入要一致。

3.虽然用的是ResNet,自己设计的模型也一个道理,保留一下训练的权重,把model模块和预测模块分开写,这个时候load一下权重,再预测即可。

补充知识:keras:怎样使用 fit_generator 来训练多个不同类型的输出

这个例子非常简单明了,模型由1个输入,2个输出,两个输出的分支分别使用MSE作为损失。

x = Convolution2D(8, 5, 5, subsample=(1, 1))(image_input)
x = Activation('relu')(x)
x = Flatten()(x)
x = Dense(50, W_regularizer=l2(0.0001))(x)
x = Activation('relu')(x)

output1 = Dense(1, activation='linear', name='output1')(x)
output2 = Dense(1, activation='linear', name='output2')(x)

model = Model(input=image_input, output=[output1, output2])
model.compile(optimizer='adam', loss={'output1': 'mean_squared_error', 'output2': 'mean_squared_error'})

产生训练数据的生成器,这里y=[y1,y2].

batch_generator(x, y, batch_size):
  ....transform images
  ....generate batch batch of size: batch_size 
  yield(X_batch, {'output1': y1, 'output2': y2} ))

之后,调用fit_generator

model.fit_generator(batch_generator(X_train, y_train, batch_size))

原问题链接。

以上这篇在keras中对单一输入图像进行预测并返回预测结果操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。