1. 数据准备
在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。
2. 数据读取
# 存储数据集的目录 base_dir = 'E:/python learn/dog_and_cat/data/' # 训练、验证数据集的目录 train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') # 猫训练图片所在目录 train_cats_dir = os.path.join(train_dir, 'cats') # 狗训练图片所在目录 train_dogs_dir = os.path.join(train_dir, 'dogs') # 猫验证图片所在目录 validation_cats_dir = os.path.join(validation_dir, 'cats') # 狗验证数据集所在目录 validation_dogs_dir = os.path.join(validation_dir, 'dogs') print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
3. 模型建立
# 搭建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=1e-4), metrics=['acc'])
4. 模型训练
train_datagen = ImageDataGenerator(rescale=1./255) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, # target directory target_size=(150, 150), # resize图片 batch_size=20, class_mode='binary' ) validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary' ) for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break hist = model.fit_generator( train_generator, steps_per_epoch=100, epochs=10, validation_data=validation_generator, validation_steps=50 ) model.save('cats_and_dogs_small_1.h5')
5. 模型评估
acc = hist.history['acc'] val_acc = hist.history['val_acc'] loss = hist.history['loss'] val_loss = hist.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.legend() plt.show()
6. 预测
imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg' test_image = image.load_img(imagename, target_size = (150, 150)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) result = model.predict(test_image) if result[0][0] == 1: prediction ='dog' else: prediction ='cat' print(prediction)
代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测
补充知识:keras 猫狗大战自搭网络以及vgg16应用
导入模块
import os import numpy as np import tensorflow as tf import random import seaborn as sns import matplotlib.pyplot as plt import keras from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalization from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import RMSprop, Adam, SGD from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16, preprocess_input from sklearn.model_selection import train_test_split
加载数据集
def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False): train_images= [data_dir + i for i in os.listdir(data_dir)] random.shuffle(train_images) def read_image(file_path, preprocess): img = image.load_img(file_path, target_size=(height, width)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) # if preprocess: # x = preprocess_input(x) return x def prep_data(images, proprocess): count = len(images) data = np.ndarray((count, height, width, channels), dtype = np.float32) for i, image_file in enumerate(images): image = read_image(image_file, preprocess) data[i] = image return data def read_labels(file_path): labels = [] for i in file_path: label = 1 if 'dog' in i else 0 labels.append(label) return labels X = prep_data(train_images, preprocess) labels = read_labels(train_images) assert X.shape[0] == len(labels) print("Train shape: {}".format(X.shape)) return X, labels
读取数据集
# 读取图片 WIDTH = 150 HEIGHT = 150 CHANNELS = 3 X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)
查看数据集信息
# 统计y sns.countplot(y) # 显示图片 def show_cats_and_dogs(X, idx): plt.figure(figsize=(10,5), frameon=True) img = X[idx,:,:,::-1] img = img/255 plt.imshow(img) plt.show() for idx in range(0,3): show_cats_and_dogs(X, idx) train_X = X[0:17500,:,:,:] train_y = y[0:17500] test_X = X[17500:25000,:,:,:] test_y = y[17500:25000] train_X.shape test_X.shape
自定义神经网络层数
input_layer = Input((WIDTH, HEIGHT, CHANNELS)) # 第一层 z = input_layer z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(64, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = MaxPooling2D(pool_size = (2,2))(z) z = Flatten()(z) z = Dense(64)(z) z = BatchNormalization()(z) z = Activation('relu')(z) z = Dropout(0.5)(z) z = Dense(1)(z) z = Activation('sigmoid')(z) model = Model(input_layer, z) model.compile( optimizer = keras.optimizers.RMSprop(), loss = keras.losses.binary_crossentropy, metrics = [keras.metrics.binary_accuracy] ) model.summary()
训练模型
history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True) score = model.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
复用vgg16模型
def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)): vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape) for layer in vgg16.layers: layer.trainable = False last = vgg16.output # 后面加入自己的模型 x = Flatten()(last) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=vgg16.input, outputs=x) return model
编译模型
model_vgg16 = vgg16_model() model_vgg16.summary() model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])
训练模型
# 训练模型 history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True) score = model_vgg16.evaluate(test_X, test_y, verbose=0) print("Large CNN Error: %.2f%%" %(100-score[1]*100))
以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]