原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡方值,对卡方值最小的箱向后合并,代码如下
import pandas as pd import numpy as np import scipy from scipy import stats def chi_bin(DF,var,target,binnum=5,maxcut=20): ''' DF:data var:variable target:target / label binnum: the number of bins output maxcut: initial bins number ''' data=DF[[var,target]] #equifrequent cut the var into maxcut bins data["cut"],breaks=pd.qcut(data[var],q=maxcut,duplicates="drop",retbins=True) #count 1,0 in each bin count_1=data.loc[data[target]==1].groupby("cut")[target].count() count_0=data.loc[data[target]==0].groupby("cut")[target].count() #get bins value: min,max,count 0,count 1 bins_value=[*zip(breaks[:maxcut-1],breaks[1:],count_0,count_1)] #define woe def woe_value(bins_value): df_woe=pd.DataFrame(bins_value) df_woe.columns=["min","max","count_0","count_1"] df_woe["total"]=df_woe.count_1+df_woe.count_0 df_woe["bad_rate"]=df_woe.count_1/df_woe.total df_woe["woe"]=np.log((df_woe.count_0/df_woe.count_0.sum())/(df_woe.count_1/df_woe.count_1.sum())) return df_woe #define iv def iv_value(df_woe): rate=(df_woe.count_0/df_woe.count_0.sum())-(df_woe.count_1/df_woe.count_1.sum()) iv=np.sum(rate * df_woe.woe) return iv #make sure every bin contain 1 and 0 ##first bin merge backwards for i in range(len(bins_value)): if 0 in bins_value[0][2:]: bins_value[0:2]=[( bins_value[0][0], bins_value[1][1], bins_value[0][2]+bins_value[1][2], bins_value[0][3]+bins_value[1][3])] continue ##bins merge forwards if 0 in bins_value[i][2:]: bins_value[i-1:i+1]=[( bins_value[i-1][0], bins_value[i][1], bins_value[i-1][2]+bins_value[i][2], bins_value[i-1][3]+bins_value[i][3])] break else: break #calculate chi-square merge the minimum chisquare while len(bins_value)>binnum: chi_squares=[] for i in range(len(bins_value)-1): a=bins_value[i][2:] b=bins_value[i+1][2:] chi_square=scipy.stats.chi2_contingency([a,b])[0] chi_squares.append(chi_square) #merge the minimum chisquare backwards i = chi_squares.index(min(chi_squares)) bins_value[i:i+2]=[( bins_value[i][0], bins_value[i+1][1], bins_value[i][2]+bins_value[i+1][2], bins_value[i][3]+bins_value[i+1][3])] df_woe=woe_value(bins_value) #print bin number and iv print("箱数:{},iv:{:.6f}".format(len(bins_value),iv_value(df_woe))) #return bins and woe information return woe_value(bins_value)
以下是效果:
初始分成10箱,目标为3箱
chi_bin(data,"age","SeriousDlqin2yrs",binnum=3,maxcut=10)
箱数:8,iv:0.184862
箱数:7,iv:0.184128
箱数:6,iv:0.179518
箱数:5,iv:0.176980
箱数:4,iv:0.172406
箱数:3,iv:0.160015
min max count_0 count_1 total bad_rate woe
0 0.0 52.0 70293 7077 77370 0.091470 -0.266233
1 52.0 61.0 29318 1774 31092 0.057056 0.242909
2 61.0 72.0 26332 865 27197 0.031805 0.853755
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]