DDR爱好者之家 Design By 杰米

1、使用numpy生成随机数的几种方式

numpy中生成随机数的几种常用函数(小结)

1)生成指定形状的0-1之间的随机数:np.random.random()和np.random.rand()

array1 = np.random.random((3))
display(array1)
# -----------------------------------
array2 = np.random.random((3,4))
display(array2)
# -----------------------------------
array3 = np.random.rand(3)
display(array3)
# -----------------------------------
array4 = np.random.rand(2,3)
display(array4)

① 操作如下

numpy中生成随机数的几种常用函数(小结)

numpy中生成随机数的几种常用函数(小结)

② 区别如下

numpy中生成随机数的几种常用函数(小结)

2)生成指定数值范围内的随机整数:np.random.randint()

numpy中生成随机数的几种常用函数(小结)

① 操作如下

array9 = np.random.randint(low=1, high=10, size=6, dtype=np.int32)
display(array9)
# ---------------------------------------------------------
array10 = np.random.randint(low=1, high=10, size=(2,3), dtype=np.int64)
display(array10)
# ---------------------------------------------------------
array11 = np.random.randint(low=1, high=10, size=(2,3,4), dtype=np.int32)
display(array11)

② 结果如下

numpy中生成随机数的几种常用函数(小结)

3)与正态分布有关的几个随机函数:np.random.randn()和np.random.normal()

  • np.random.randn 生成服从均值为0,标准差为1的标准正态分布随机数;
  • np.random.normal 生成指定均值和标准差的正态分布随机数;
array5 = np.random.randn(3)
display(array5)
# ---------------------------------------------
array6 = np.random.randn(2,3)
display(array6)
# ---------------------------------------------
array7 = np.random.normal(loc=2,scale=0.5,size=6)
display(array7)
# ---------------------------------------------
array8 = np.random.normal(loc=2,scale=0.5,size=6).reshape(2,3)
display(array8)

① 结果如下

numpy中生成随机数的几种常用函数(小结)

② 区别如下

numpy中生成随机数的几种常用函数(小结)

4)均匀分布随机函数:np.random.uniform()

用法:生成指定范围内的服从均匀分布的随机数;

array11 = np.random.uniform(1,10,5)
display(array11)
# ---------------------------------
array12 = np.random.uniform(1,10,(2,3))
display(array12)

① 结果如下

numpy中生成随机数的几种常用函数(小结)

5)np.random.seed():按照种子来生成随机数,种子一样,则生成的随机数结果必一致

numpy中生成随机数的几种常用函数(小结)

① 操作如下

np.random.seed(3)
a = np.random.rand(3)
display(a)
np.random.seed(3)
b = np.random.rand(3)
display(b)
# --------------------------
np.random.seed()
a = np.random.rand(3)
display(a)
np.random.seed()
b = np.random.rand(3)
display(b)

② 结果如下

numpy中生成随机数的几种常用函数(小结)

6)np.random.shuffle():打乱数组元素顺序(原地操作数组)

c = np.arange(10)
display(c)
np.random.shuffle(c)
display(c)

① 结果如下

numpy中生成随机数的几种常用函数(小结)

7)np.random.choice():按照指定概率从指定数组中,生成随机数;

① np.random.choice()函数的用法说明

d = np.random.choice([1,2,3,4], p=[0.1, 0.2, 0.3, 0.4])
display(d)

说明:上述函数第一个参数表示的是数组,第二个参数表示的是概率值。上述函数的含义是当进行n多次重复实验的时候,抽取1的概率为0.1,抽取2的概率为0.2,抽取3的概率为0.3,抽取4的概率为0.4。

② 结果如下

numpy中生成随机数的几种常用函数(小结)

③ 随即进行10000次重复实验,检测每一个数,被抽取到的概率

list1 = [0,0,0,0]
for i in range(100000):
  f = np.random.choice([1,2,3,4], p=[0.1, 0.2, 0.3, 0.4])
  list1[f-1] = list1[f-1] + 1
display(list1)

result_list = [value/sum(list1) for value in list1]
display(result_list)

④ 结果如下

numpy中生成随机数的几种常用函数(小结)

⑤ 模拟进行100000次掷硬币重复实验,检测每一面,被抽取到的概率

list1 = [0,0]
for i in range(100000):
  f = np.random.choice([0,1], p=[0.5,0.5])
  list1[f] = list1[f] + 1
display(list1)

result_list = [value/sum(list1) for value in list1]
display(result_list)

⑥ 结果如下

numpy中生成随机数的几种常用函数(小结)

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。