DDR爱好者之家 Design By 杰米

一 简介

目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰。以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例。

Python Opencv实现单目标检测的示例代码

环境:python3.7 opencv4.4.0

二 背景前景分离

1 灰度+二值+形态学 轮廓特征和联通组件

根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割。

1 原图

Python Opencv实现单目标检测的示例代码

2 灰度化

Python Opencv实现单目标检测的示例代码

3 二值化

Python Opencv实现单目标检测的示例代码

4 形态学处理

Python Opencv实现单目标检测的示例代码

5 提取轮廓并找出目标外接矩形

代码封装:

def get_roi_contours(image_path, morph_size, num_morph):
  '''
  参数详解:
  image_path:所需处理图片路径
  morph_size:形态学处理核的大小
  num_morph:进行形态学处理的次数
  '''
  image = cv2.imread(image_path, cv2.IMREAD_COLOR)
  #灰度转换
  gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  #二值化
  threhold, binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
  #形态学操作
  kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=morph_size)
  morph_image = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel)
  for i in range(num_morph-1):
    morph_image = cv2.morphologyEx(morph_image, cv2.MORPH_CLOSE, kernel)
  #查找轮廓
  contours, hierarchy = cv2.findContours(morph_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  #选取轮廓面积最大的轮廓
  area = 0
  max_area_index = 0
  for j in range(len(contours)):
    if area < cv2.contourArea(contours[j]):
      max_area_index = j
      area = cv2.contourArea(contours[j])
  rect = cv2.boundingRect(contours[max_area_index])
  return rect

6 通过联通组件找到外接矩形
代码封装:

def get_roi_ConCom(image_path, morph_size, num_morph):
  '''
  参数详解:
  image_path:所需处理图片路径
  morph_size:形态学处理核的大小
  num_morph:进行形态学处理的次数
  '''
  image = cv2.imread(image_path, cv2.IMREAD_COLOR)
  #灰度转换
  gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  #二值化
  threhold, binary_image = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
  #形态学操作
  kernel = cv2.getStructuringElement(shape=cv2.MORPH_RECT, ksize=morph_size)
  morph_image = cv2.morphologyEx(binary_image, cv2.MORPH_CLOSE, kernel)
  for i in range(num_morph-1):
    morph_image = cv2.morphologyEx(morph_image, cv2.MORPH_CLOSE, kernel)
  #联通组件查询
  numlabels, components_img, stats, centers = cv2.connectedComponentsWithStats(morph_image, 8)
  #获取除背景外的所有联通组件
  stats_without_back = stats[1:]
  #获取除背景外的所有联通组件的面积最大值
  max_area = np.max(stats_without_back, axis=0)[-1]
  #获取面积最大联通组件的index
  max_area_index = stats_without_back[:, -1]==max_area
  rect = stats_without_back[max_area_index]
  return np.squeeze(rect)[0:4]

2 Kmeans聚类实现前景和背景的分离

1 kmeans聚类后的图像,由于簇的中心是随机初始化的,所以目标的像素值可能为0,也可能为1,若采用opencv的findContours则要求前景像素值为1。

Python Opencv实现单目标检测的示例代码

2 利用轮廓特征找外接矩形

由于Kmeans随机初始化簇中心导致前景目标像素不确定,采用边缘提取的方法再查找轮廓。

边缘图:

Python Opencv实现单目标检测的示例代码

代码封装:

def get_roi_Kmeans(image_path):
  image = cv2.imread(image_path, cv2.IMREAD_COLOR)
  image_data = image.reshape(-1, 3).astype(np.float32) #必须要转成浮点类型进行计算
  #簇内平方和,标签和每个簇的中心
  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 10, 1)
  interia, label, centers = cv2.kmeans(image_data, 2, None, criteria, 5, cv2.KMEANS_RANDOM_CENTERS)
  #二值化,将标签为0的转换为255,即是目标
  label[label==0] = 255
  label[label==1] = 0
  #转换数据类型,轮廓查找要是uint8类型数据
  thresh_img = label.reshape(image.shape[0:2]).astype(np.uint8)
  x_grad = cv2.Sobel(thresh_img, cv2.CV_32F, 1, 0)
  y_grad = cv2.Sobel(thresh_img, cv2.CV_32F, 0, 1)

  x_grad = cv2.convertScaleAbs(x_grad) #ax + b 线性变换
  y_grad = cv2.convertScaleAbs(y_grad)
  
  dst = cv2.add(x_grad, y_grad, dtype=cv2.CV_16S) #将两种sobel的加起来就可以得到整个边缘
  dst = cv2.convertScaleAbs(dst)
  plt.imshow(dst, cmap='gray')
  #轮廓查找目标必须为1
  contours, hierarchy = cv2.findContours(dst, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  #获取外接矩形
  rect = cv2.boundingRect(contours[0])
  return rect

三 总结

单目标检测较为简单,只要合理利用目标和背景的差异便可将其分离出来。当然单目标检测的方法还有很多,比如有目标模板的时候可以采用模板匹配或者均值漂移,有足够的数据集时也可采用机器学习和深度学习方法。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。