一、层次分析法原理
层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于20世纪70年代中期提出,用于确定评价模型中各评价因子/准则的权重,进一步选择最优方案。该方法仍具有较强的主观性,判断/比较矩阵的构造在一定程度上是拍脑门决定的,一致性检验只是检验拍脑门有没有自相矛盾得太离谱。
相关的理论参考可见:wiki百科
二、代码实现
需要借助Python的numpy矩阵运算包,代码最后用了一个b1矩阵进行了调试,相关代码如下,具体的实现流程已经用详细的注释标明,各位小伙伴有疑问的欢迎留言和我一起讨论。
import numpy as np
class AHP:
"""
相关信息的传入和准备
"""
def __init__(self, array):
## 记录矩阵相关信息
self.array = array
## 记录矩阵大小
self.n = array.shape[0]
# 初始化RI值,用于一致性检验
self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58,
1.59]
# 矩阵的特征值和特征向量
self.eig_val, self.eig_vector = np.linalg.eig(self.array)
# 矩阵的最大特征值
self.max_eig_val = np.max(self.eig_val)
# 矩阵最大特征值对应的特征向量
self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real
# 矩阵的一致性指标CI
self.CI_val = (self.max_eig_val - self.n) / (self.n - 1)
# 矩阵的一致性比例CR
self.CR_val = self.CI_val / (self.RI_list[self.n - 1])
"""
一致性判断
"""
def test_consist(self):
# 打印矩阵的一致性指标CI和一致性比例CR
print("判断矩阵的CI值为:" + str(self.CI_val))
print("判断矩阵的CR值为:" + str(self.CR_val))
# 进行一致性检验判断
if self.n == 2: # 当只有两个子因素的情况
print("仅包含两个子因素,不存在一致性问题")
else:
if self.CR_val < 0.1: # CR值小于0.1,可以通过一致性检验
print("判断矩阵的CR值为" + str(self.CR_val) + ",通过一致性检验")
return True
else: # CR值大于0.1, 一致性检验不通过
print("判断矩阵的CR值为" + str(self.CR_val) + "未通过一致性检验")
return False
"""
算术平均法求权重
"""
def cal_weight_by_arithmetic_method(self):
# 求矩阵的每列的和
col_sum = np.sum(self.array, axis=0)
# 将判断矩阵按照列归一化
array_normed = self.array / col_sum
# 计算权重向量
array_weight = np.sum(array_normed, axis=1) / self.n
# 打印权重向量
print("算术平均法计算得到的权重向量为:\n", array_weight)
# 返回权重向量的值
return array_weight
"""
几何平均法求权重
"""
def cal_weight__by_geometric_method(self):
# 求矩阵的每列的积
col_product = np.product(self.array, axis=0)
# 将得到的积向量的每个分量进行开n次方
array_power = np.power(col_product, 1 / self.n)
# 将列向量归一化
array_weight = array_power / np.sum(array_power)
# 打印权重向量
print("几何平均法计算得到的权重向量为:\n", array_weight)
# 返回权重向量的值
return array_weight
"""
特征值法求权重
"""
def cal_weight__by_eigenvalue_method(self):
# 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重
array_weight = self.max_eig_vector / np.sum(self.max_eig_vector)
# 打印权重向量
print("特征值法计算得到的权重向量为:\n", array_weight)
# 返回权重向量的值
return array_weight
if __name__ == "__main__":
# 给出判断矩阵
b = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])
# 算术平均法求权重
weight1 = AHP(b).cal_weight_by_arithmetic_method()
# 几何平均法求权重
weight2 = AHP(b).cal_weight__by_geometric_method()
# 特征值法求权重
weight3 = AHP(b).cal_weight__by_eigenvalue_method()
总结
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]