DDR爱好者之家 Design By 杰米
一、层次分析法原理
层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于20世纪70年代中期提出,用于确定评价模型中各评价因子/准则的权重,进一步选择最优方案。该方法仍具有较强的主观性,判断/比较矩阵的构造在一定程度上是拍脑门决定的,一致性检验只是检验拍脑门有没有自相矛盾得太离谱。
相关的理论参考可见:wiki百科
二、代码实现
需要借助Python的numpy矩阵运算包,代码最后用了一个b1矩阵进行了调试,相关代码如下,具体的实现流程已经用详细的注释标明,各位小伙伴有疑问的欢迎留言和我一起讨论。
import numpy as np class AHP: """ 相关信息的传入和准备 """ def __init__(self, array): ## 记录矩阵相关信息 self.array = array ## 记录矩阵大小 self.n = array.shape[0] # 初始化RI值,用于一致性检验 self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59] # 矩阵的特征值和特征向量 self.eig_val, self.eig_vector = np.linalg.eig(self.array) # 矩阵的最大特征值 self.max_eig_val = np.max(self.eig_val) # 矩阵最大特征值对应的特征向量 self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real # 矩阵的一致性指标CI self.CI_val = (self.max_eig_val - self.n) / (self.n - 1) # 矩阵的一致性比例CR self.CR_val = self.CI_val / (self.RI_list[self.n - 1]) """ 一致性判断 """ def test_consist(self): # 打印矩阵的一致性指标CI和一致性比例CR print("判断矩阵的CI值为:" + str(self.CI_val)) print("判断矩阵的CR值为:" + str(self.CR_val)) # 进行一致性检验判断 if self.n == 2: # 当只有两个子因素的情况 print("仅包含两个子因素,不存在一致性问题") else: if self.CR_val < 0.1: # CR值小于0.1,可以通过一致性检验 print("判断矩阵的CR值为" + str(self.CR_val) + ",通过一致性检验") return True else: # CR值大于0.1, 一致性检验不通过 print("判断矩阵的CR值为" + str(self.CR_val) + "未通过一致性检验") return False """ 算术平均法求权重 """ def cal_weight_by_arithmetic_method(self): # 求矩阵的每列的和 col_sum = np.sum(self.array, axis=0) # 将判断矩阵按照列归一化 array_normed = self.array / col_sum # 计算权重向量 array_weight = np.sum(array_normed, axis=1) / self.n # 打印权重向量 print("算术平均法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight """ 几何平均法求权重 """ def cal_weight__by_geometric_method(self): # 求矩阵的每列的积 col_product = np.product(self.array, axis=0) # 将得到的积向量的每个分量进行开n次方 array_power = np.power(col_product, 1 / self.n) # 将列向量归一化 array_weight = array_power / np.sum(array_power) # 打印权重向量 print("几何平均法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight """ 特征值法求权重 """ def cal_weight__by_eigenvalue_method(self): # 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重 array_weight = self.max_eig_vector / np.sum(self.max_eig_vector) # 打印权重向量 print("特征值法计算得到的权重向量为:\n", array_weight) # 返回权重向量的值 return array_weight if __name__ == "__main__": # 给出判断矩阵 b = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]]) # 算术平均法求权重 weight1 = AHP(b).cal_weight_by_arithmetic_method() # 几何平均法求权重 weight2 = AHP(b).cal_weight__by_geometric_method() # 特征值法求权重 weight3 = AHP(b).cal_weight__by_eigenvalue_method()
总结
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年11月16日
2024年11月16日
- 秀兰玛雅.1999-友情人【大旗】【WAV+CUE】
- 小米.2020-我想在城市里当一个乡下人【滚石】【FLAC分轨】
- 齐豫.2003-THE.UNHEARD.OF.CHYI.3CD【苏活音乐】【WAV+CUE】
- 黄乙玲1986-讲什么山盟海誓[日本东芝版][WAV+CUE]
- 曾庆瑜1991-柔情陷阱[台湾派森东芝版][WAV+CUE]
- 陈建江《享受男声》DTS-ES6.1【WAV】
- 群星《闪光的夏天 第5期》[FLAC/分轨][392.38MB]
- 徐小凤《三洋母带》1:1母盘直刻[WAV+CUE][981M]
- 王菲1995《菲靡靡之音》[香港首版][WAV+CUE][1G]
- 《双城之战》主题小游戏现已上线 扮演金克丝探索秘密基地
- 《霍格沃茨之遗》PS5Pro画面对比:光追性能显著提升
- 《怪猎荒野》PS5Pro主机版对比:B测性能都不稳定
- 黄宝欣.1992-黄宝欣金装精选2CD【HOMERUN】【WAV+CUE】
- 群星.1996-宝丽金流行爆弹精丫宝丽金】【WAV+CUE】
- 杜德伟.2005-独领风骚新歌精选辑3CD【滚石】【WAV+CUE】