DDR爱好者之家 Design By 杰米

在处理数据的时候,很多时候会遇到批量替换的情况,如果一个一个去修改效率过低,也容易出错。replace()是很好的方法。

Pandas替换及部分替换(replace)实现流程详解

源数据

1、替换全部或者某一行

replace的基本结构是:df.replace(to_replace, value) 前面是需要替换的值,后面是替换后的值。

例如我们要将南岸改为城区:

Pandas替换及部分替换(replace)实现流程详解

将南岸改为城区

这样Python就会搜索整个DataFrame并将文档中所有的南岸替换成了城区(要注意这样的操作并没有改变文档的源数据,要改变源数据需要使用inplace = True)。

Pandas替换及部分替换(replace)实现流程详解

使用inplace = True更改源数据

由于南岸只有城市一列具有相同值,使用起来比较方便。

但是如果我们要改变表1Lon里的某个数据,而不改变Longitude的数据要怎么做呢?

Pandas替换及部分替换(replace)实现流程详解

改变指定的列的数据

所以只想替换部分数据的时候并且要写入源数据就需要指定inplace。

在上面的操作只改变了表1Lon的数据,其它列的数据并没有被替换,而且在替换后的结果不需要我们再和源数据进行合并操作,可以直接体现在源数据中。

2、替换指定的某个或指定的多个数值(用字典的形式)

Pandas替换及部分替换(replace)实现流程详解

只改变指定的值

这个很好理解,就是字典里的建作为原值,字典里的值作为替换的新值。

当然,我们也可是使用列表的形式进行替换:df.replace(['A','29.54'],['B',100])

Pandas替换及部分替换(replace)实现流程详解

用列表的形式进行替换

还有如果想要替换的新值是一样的话,我们还可以这样做:

Pandas替换及部分替换(replace)实现流程详解

替换的新值一样时

部分替换和替换某个值结合使用的话就可以替换单个列的数值:

Pandas替换及部分替换(replace)实现流程详解

替换单个列的数值

3、使用正则表达式替换

正则表达式很强大,能够让我们实现一次替换很多很多个不同的值:

Pandas替换及部分替换(replace)实现流程详解

源数据

Pandas替换及部分替换(replace)实现流程详解

正则表达式没有指定regex =True

Pandas替换及部分替换(replace)实现流程详解

正则表达式指定regex =True

使用正则表达式的时候记得后面加 regex=True参数。

有图中我们可以看到只要包含有大写的英文字母的数据都被替换了,如果我们要写入源数据还需要指定inpla = True。

Pandas替换及部分替换(replace)实现流程详解

指定列替换数据

当需要将缺失值替换掉的时候,我们可以考虑直接只用fillna(),功能更强大,这个前面已经有说过了。

在某些情况下,如果我们只需要某个数据的部分内容,我们该怎么操作呢?

比如要把变电站都改为transformer_substation,或者是把Latitude列的前面的ab改为AB:

Pandas替换及部分替换(replace)实现流程详解

指定列更改替换部分字符

Pandas替换及部分替换(replace)实现流程详解

指定列更改替换部分字符

需要注意的时更好指定列的时候,使用str.replace时不能使用inplace = True参数,因此需要改成赋值,赋值的时候不要忘了是列的赋值而不是整个表格的赋值。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。