DDR爱好者之家 Design By 杰米

一、SQLAlchemy简介

1.1、SQLAlchemy是什么?

sqlalchemy是一个python语言实现的的针对关系型数据库的orm库。可用于连接大多数常见的数据库,比如Postges、MySQL、SQLite、Oracle等。

1.2、为什么要使用SQLAlchemy?

它将你的代码从底层数据库及其相关的SQL特性中抽象出来。

1.3、SQLAlchemy提供了两种主要的使用模式

  • SQL表达式语言(SQLAlchemy Core)
  • ORM

1.4、应该选择哪种模式?

虽然你使用的框架中已经内置了ORM,但是希望添加更强大的报表功能,请选用Core。
如果你想在一个一模式为中心的视图中查看数据(用户类似于SQL),请使用Core。
如果你的数据不需要业务对象,请使用Core。
如果你要把数据看作业务对象,请使用ORM。
如果你想快速创建原型,请使用ORM。
如果你需要同事使用业务对象和其他与问题域无关的数据,请组合使用Core和ORM。

1.5、连接数据库

要连接到数据库,需要先创建一个SQLAlchemy引擎。SQLAlchemy引擎为数据库创建一个公共接口来执行SQL语句。这是通过包装数据库连接池和方言(不同数据库客户端)来实现的。

SQLAlchemy提供了一个函数来创建引擎。在这个函数中,你可以指定连接字符串,以及其他一些可选的关键字参数。

from sqlalchemy import create_engine
engine = create_engine('sqlite:///cookies.db')
engine1 = create_engine('sqlite:///:memory:')
engine2 = create_engine('sqlite://///home/cookiemonster/cookies.db')
engine3 = create_engine('sqlite:///c:\\Users\\cookiemonster\\cookies.db')

engine_mysql = create_engine('mysql+pymysql://cookiemonster:chocolatechip', '@mysql01.monster.internal/cookies', pool_recycle=3600)

1.6、模式和类型

为了访问底层数据库,SQLAlchemy需要用某种东西来代表数据库中的表。为此,可以使用下面三种方法总的一种:

使用用户定义的Table对象
使用代表数据表的声明式类
从数据库中推断

二、SQLAlchemy core

SQLAlchemy core定义表结构使用的是1.5中说的第1种方式。table对象包含一系列带有类型的列和属性,它们与一个常见的元数据容器相关联。

元数据可以看作是一种Table对象目录。这些表可以通过MetaData.tables来访问。

2.1、定义表结构

在SQLAlchemy Core中,我们通过Table构造函数来初始化Table对象。我们要在构造函数中提供MetaData对象(元数据)和表名,任何其他参数都被认为是列对象。列是通过Column()函数创建的。

from sqlalchemy import create_engine
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy import MedaData

metadata = MetaData()
user = table('user', metadata, 
			 Column(id, Integer(), primary_key=True), 
			 Column(name, String(255)), 
)

engine = create_engine('sqlite:///:memory:')
metadata.create_all(engine) # 表的持久化

2.2、插入数据

首先创造一条insert语句,用来把小明放入user表中。为此,先调用user表的insert()方法,然后再使用values()语句,关键字参数为各个列及相应值:

ins = user.insert().values(
	id=1, 
 name='小明'
)
print(str(ins))

到此仅仅只是创建了一个inset语句,还没有真正执行呢,接下来执行插入操作:

connection = engine.connect()
result = connection.execute(ins)
print(result.inserted_primary_key)

2.3、查询数据

构建查询时,要用到select函数,它类似于标准SQL SELECT语句。

from sqlalchemy.sql import select
s = select([user])
# 可以使用str(s)查看数据库看到的语句
print(str(s))
rp = connection.execute(s)
results = rp.fetchall()

2.3.1、ResultProxy

execute()函数的返回值是一热ResultProxy对象,它允许使用索引、名称或Column对象进行访问。

使用ResultProxy处理行

first_row = results[0]
first_row[1]
first_row.name
first_row[user.c.name]

迭代ResultProxy

rp = connection.execute(s)
for record in rp:
	print(record.user_name)

使用方法访问结果

rp.first() # 若有记录,则返回第一个记录并关闭连接
rp.fetchone() # 返回一行,并保持光标为打开状态,以便你做更多获取调用
rp.scalar() # 入股查询结果是包含一个列的单条记录,则返回单个值

2.3.2、控制查询中的列数

s = select([user.c.name])
rp = connection.execute(s)
print(rp.keys())
result = rp.first()

2.3.3、排序

s = select([user.c.name])
s = s.order_by(user.c.name)
rp = connection.execute(s)
for user in rp:
	print(user.name)

2.3.4、限制返回结果集的条数

s = select([user.c.name])
s = s.order_by(user.c.name)
s = s.limit(2)
rp = connection.execute(s)
for user in rp:
	print(user.name)

2.3.5、内置SQL函数和标签

from sqlalchemy.sql import func
s = select([func.sum(user.c.score)])
rp = connection.execute(s)
print(rp.scalar())

2.3.6、过滤

对查询过滤是通过添加where()语句来完成的。

s = select([user]).where(user.c.name == '小明')
rp = connection.execute(s)
record = rp.first()
print(record.items())

这里只是介绍了常用的查询方法,更多复杂的查询请查阅官方文档。

2.4、更新数据

update()方法和前面的insert()方法很相似,它们的语法几乎完全一样,但是update()可以指定一个where()子句,用来指出要更新哪些行。

from sqlalchemy import update
u = update(user).where(user.c.name == '小明')
u = u.values(name='小华')
result = connection.execute(u)
print(result.rowcount)

2.5、删除数据

创建删除语句时,既可以使用delete()函数,也可以使用表的delete()方法。与insert()和update()不同,delete()不接收值参数,只接收一个可选where子句,用来指定删除范文。

from sqlalchemy import delete
u = delete(user).where(user.c.name == '小华')
result = connection.execute(u)
print(result.rowcount)

注意:

更多的高级操作:连接、别名、分组、链式调用、原始查询等,请查阅官方文档。

2.5、事务

通过connection.begin()开启一个事务,返回一个transaction对象,接下来根据执行的情况调用transaction.commit()提交修改或者调用transaction.rollback()回滚操作。

三、SQLAlchemy orm

SQLAlchemy orm定义表结构使用的是1.5中说的第2种方式。通过定义一个类,它继承自一个名为declarative_base的特殊基类。declarative_base把元数据容器和映射器(用来把类映射到数据表)结合在一起。

orm使用的类应该满足如下四个要求:

  • 继承自declarative_base对象。
  • 包含__tablename__,这是数据库中使用的表名。
  • 包含一个或多个属性,它们都是column对象。
  • 确保一个或多个属性组成主键。

3.1、定义表结构:

from sqlalchemy import create_engine
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
class User(Base):
 __tablename__ = 'user'
 
	id = Column(Integer, primary_key=True)
	name = Column(String(255))
	
engine = create_engine('sqlite:///')
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()

3.2、会话(session)

会话是SQLAlchemy ORM和数据库交互的方式。它通过引擎包装数据库连接,并为通过会话加载或与会话关联的对象提供标识映射(identity map)。标识映射是一种类似于缓存的数据结构,它包含由对象表和主键确定的一个唯一的对象列表。会话还包装了一个事务,这个事务将一直保持打开状态,直到会话提交或回滚。

为创建会话,SQLAlchemy提供了一个sessionmaker类,这个类可以确保在整个应用程序中能够使用相同的参数创建会话。sessionmaker类通过创建一个Session类来实现这一点,Session类是根据传递给sessionmaker工厂的参数配置的。

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')
Session = sessionmaker(bind=engine)
session = Session()

3.3、插入

user = User(1, '小明')
session.add(user)
session.commit()

3.4、查询

for row in session.query(User):
	print(row.id, row.name)

注意:session.query()的返回值是Query对象,不能使用它的返回值作为查询结果。关于Query对象的用法,请参阅:https://docs.sqlalchemy.org/en/13/orm/query.html#sqlalchemy.orm.query.Query

常用Query对象的方法:

q = session.query(User)
q.count() # 获取查询结果的数量
q.all() # 返回查询结果的list,会触发执行SQL查询
q.get(id) # 根据primary_key查询单个对象
q.as_scalar() # 返回此次查询的SQL语句

3.4.1、控制查询中的列数

print(session.query(user.name).first())

3.4.2、排序

for record in sesssion.query(user).order_by(user.name):
	print(user.name)

3.4.3、限制返回结果集的条数

query = session.query(user).order_by(user.name).[:2]
print([result.user_name for result in query])

3.4.4、内置SQL函数和标签

from sqlalchemy import func
inv_count = session.query(func.sum(user.name)).scalar()
print(inv_count)

3.4.5、过滤

record = session.query(user).filter(user.name == '小华')
print(record)

3.5、更新数据

query = session.query(user)
xm_user = query.filter(user.user_name == '小华').first()
xm_user.name = 'robin'
session.commit()
print(xm_user.quantity)

3.6、删除数据

query = session.query(user)
xm_user = query.filter(user.user_name == '小华').first()
session.delete(xm_user)
session.commit()
print(xm_user)

注意:

这里简单介绍了SQLAlchemy orm的常见用法,更高级的用法请查阅官方文档。

四、反射

使用反射技术可以利用先用数据库填充SQLAlchemy对象。

4.1、反射单个表

创建初始对象:

from sqlalchemy import Metadata, create_engines
metadata = MetaData()
engine = reate_engine('sqlite:///')

反射Artist表

from sqlalchmy impport Table
artist = Table('Artist', metadata, autoload=True, autoload_with=engine)

4.2、反射整个数据库

metadata.reflect(bind=engine)

参考资料

https://docs.sqlalchemy.org/en/13/core/type_basics.html#generic-types

以上就是Python SQLAlchemy库的使用方法的详细内容,更多关于Python SQLAlchemy库的资料请关注其它相关文章!

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。