DDR爱好者之家 Design By 杰米

上代码:

#coding=utf-8

import cv2
import dlib

path = "imagePath/9.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸分类器
detector = dlib.get_frontal_face_detector()
# 获取人脸检测器
predictor = dlib.shape_predictor(
  "shape_predictor_68_face_landmarks.dat"
)
color = (0, 255, 0) # 定义绘制颜色

dets = detector(gray, 1)
for face in dets:
  shape = predictor(img, face) # 寻找人脸的68个标定点
  chang=[]
  kuan= []
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    chang.append(pt.x)
    kuan.append(pt.y)
    #cv2.circle(img, pt_pos, 1, (0, 255, 0), 1)
  x1 = max(chang)
  x2 = min(chang)
  y1 = max(kuan)
  y2 = min(kuan)
  cv2.rectangle(img, (x2, y2), (x1, y1), color, 1)
  cropped = img[y2 + 1:y1, x2 + 1:x1] # 裁剪坐标为[y0:y1, x0:x1]
  cv2.imshow("image", cropped)
  k = cv2.waitKey(0)
  if k == ord("s"):
    cv2.imwrite("imagePath/9-7.png", cropped)
cv2.destroyAllWindows()

识别效果:

Python用dilb提取照片上人脸的示例

以上就是Python用dilb提取照片上人脸的示例的详细内容,更多关于python 提取人脸的资料请关注其它相关文章!

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。