DDR爱好者之家 Design By 杰米

1.阈值化分割原理

通过对图像的灰度直方图进行数学统计,选择一个或多个阈值将像素划分为若干类。一般情况下,当图像由灰度值相差较大的目标和背景组成时,如果目标区域内部像素灰度分布均匀一致,背景区域像素在另一个灰度级上也分布均匀,这时图像的灰度直方图会呈现出双峰特性。

在这种情况下,选取位于这两个峰值中间的谷底对应的灰度值T作为灰度阈值,将图像中各个像素的灰度值与这个阈值进行比较,根据比较的结果将图像中的像素划分到两个类中。像素灰度值大于阈值T的像素点归为一类,其余像素点归为另一类。经阈值化处理后的图像g(x,y)定义为:

基于Python的图像阈值化分割(迭代法)

其中f(x,y)为原图像,T为灰度阈值,g(x,y)为分割后产生的二值图像。

2.算法流程图

基于Python的图像阈值化分割(迭代法)

3.代码实现

from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
#读入图片并转化为矩阵
img = plt.imread('2.jpg')
im = np.array(img)

# 矩阵大小
l = len(im)
w = len(im[0])

#求初始阈值
zmin = np.min(im)
zmax = np.max(im)
t0 = int((zmin+zmax)/2)

#初始化相关变量初始化
t1=0
res1=0
res2=0
s1=0
s2=0

#迭代法计算最佳阈值
while abs(t0-t1)>0:
 for i in range(0,l-1):
  for j in range(0,w-1):
   if im[i,j]<t0:
    res1=res1+im[i,j]
    s1=s1+1
   elif im[i,j]>t0:
    res2=res2+im[i,j]
    s2=s2+1
 avg1=res1/s1
 avg2=res2/s2
 res1 = 0
 res2 = 0
 s1 = 0
 s2 = 0
 t1 = t0   #旧阈值储存在t1中
 t0=int((avg1+avg2)/2)  #计算新阈值

#阈值化分割
#像素点灰度值小于最佳阈值t0用0填充,其余用255填充
im = np.where(im[...,:] < t0, 0, 255)

#绘制原图窗口
plt.figure()
plt.imshow(img , cmap='gray')
plt.title('original')

#绘制原图直方图并显示最佳阈值
plt.figure()
plt.hist(img.ravel(),256)
plt.title('hist')
plt.axvline(t0)  #绘制最佳阈值分割线
plt.text(25, 6100, "Best Threshold:{}".format(t0), size = 15, alpha = 0.8)

#绘制阈值化分割后图像
plt.figure()
plt.imshow(Image.fromarray(im) , cmap='gray')
plt.title('new')

#绘制阈值化分割后图像的直方图
plt.figure()
plt.hist(im.ravel(),256)
plt.title('hist')

plt.show()

4.阈值化分割结果

原始图像

基于Python的图像阈值化分割(迭代法)

原始图像直方图

基于Python的图像阈值化分割(迭代法)

阈值化分割后图像

基于Python的图像阈值化分割(迭代法)

阈值化分割后图像直方图

基于Python的图像阈值化分割(迭代法)

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?