DDR爱好者之家 Design By 杰米

表情识别

表情识别支持7种表情类型,生气、厌恶、恐惧、开心、难过、惊喜、平静等。

实现思路

使用OpenCV识别图片中的脸,在使用keras进行表情识别。

效果预览

python 实现表情识别

实现代码

与《性别识别》相似,本文表情识别也是使用keras实现的,和性别识别相同,型数据使用的是oarriaga/face_classification的,代码如下:

#coding=utf-8
#表情识别

import cv2
from keras.models import load_model
import numpy as np
import chineseText
import datetime

startTime = datetime.datetime.now()
emotion_classifier = load_model(
  'classifier/emotion_models/simple_CNN.530-0.65.hdf5')
endTime = datetime.datetime.now()
print(endTime - startTime)

emotion_labels = {
  0: '生气',
  1: '厌恶',
  2: '恐惧',
  3: '开心',
  4: '难过',
  5: '惊喜',
  6: '平静'
}

img = cv2.imread("img/emotion/emotion.png")
face_classifier = cv2.CascadeClassifier(
  "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(
  gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40))
color = (255, 0, 0)

for (x, y, w, h) in faces:
  gray_face = gray[(y):(y + h), (x):(x + w)]
  gray_face = cv2.resize(gray_face, (48, 48))
  gray_face = gray_face / 255.0
  gray_face = np.expand_dims(gray_face, 0)
  gray_face = np.expand_dims(gray_face, -1)
  emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face))
  emotion = emotion_labels[emotion_label_arg]
  cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10),
         (255, 255, 255), 2)
  img = chineseText.cv2ImgAddText(img, emotion, x + h * 0.3, y, color, 20)

cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

以上就是python 实现表情识别的详细内容,更多关于python 表情识别的资料请关注其它相关文章!

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。