DDR爱好者之家 Design By 杰米
反向传播的目的是计算成本函数C对网络中任意w或b的偏导数。一旦我们有了这些偏导数,我们将通过一些常数 α的乘积和该数量相对于成本函数的偏导数来更新网络中的权重和偏差。这是流行的梯度下降算法。而偏导数给出了最大上升的方向。因此,关于反向传播算法,我们继续查看下文。
我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向。
图示演示:
反向传播算法中Sigmoid函数代码演示:
# 实现 sigmoid 函数 return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): # sigmoid 导数的计算 return sigmoid(x)*(1-sigmoid(x))
反向传播算法中ReLU 函数导数函数代码演示:
def relu_derivative(x): # ReLU 函数的导数 d = np.array(x, copy=True) # 用于保存梯度的张量 d[x < 0] = 0 # 元素为负的导数为 0 d[x >= 0] = 1 # 元素为正的导数为 1 return d
实例扩展:
BP反向传播算法Python简单实现
import numpy as np # "pd" 偏导 def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoidDerivationx(y): return y * (1 - y) if __name__ == "__main__": #初始化 bias = [0.35, 0.60] weight = [0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55] output_layer_weights = [0.4, 0.45, 0.5, 0.55] i1 = 0.05 i2 = 0.10 target1 = 0.01 target2 = 0.99 alpha = 0.5 #学习速率 numIter = 10000 #迭代次数 for i in range(numIter): #正向传播 neth1 = i1*weight[1-1] + i2*weight[2-1] + bias[0] neth2 = i1*weight[3-1] + i2*weight[4-1] + bias[0] outh1 = sigmoid(neth1) outh2 = sigmoid(neth2) neto1 = outh1*weight[5-1] + outh2*weight[6-1] + bias[1] neto2 = outh2*weight[7-1] + outh2*weight[8-1] + bias[1] outo1 = sigmoid(neto1) outo2 = sigmoid(neto2) print(str(i) + ", target1 : " + str(target1-outo1) + ", target2 : " + str(target2-outo2)) if i == numIter-1: print("lastst result : " + str(outo1) + " " + str(outo2)) #反向传播 #计算w5-w8(输出层权重)的误差 pdEOuto1 = - (target1 - outo1) pdOuto1Neto1 = sigmoidDerivationx(outo1) pdNeto1W5 = outh1 pdEW5 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W5 pdNeto1W6 = outh2 pdEW6 = pdEOuto1 * pdOuto1Neto1 * pdNeto1W6 pdEOuto2 = - (target2 - outo2) pdOuto2Neto2 = sigmoidDerivationx(outo2) pdNeto1W7 = outh1 pdEW7 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W7 pdNeto1W8 = outh2 pdEW8 = pdEOuto2 * pdOuto2Neto2 * pdNeto1W8 # 计算w1-w4(输出层权重)的误差 pdEOuto1 = - (target1 - outo1) #之前算过 pdEOuto2 = - (target2 - outo2) #之前算过 pdOuto1Neto1 = sigmoidDerivationx(outo1) #之前算过 pdOuto2Neto2 = sigmoidDerivationx(outo2) #之前算过 pdNeto1Outh1 = weight[5-1] pdNeto2Outh2 = weight[7-1] pdEOuth1 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh1 + pdEOuto2 * pdOuto2Neto2 * pdNeto1Outh1 pdOuth1Neth1 = sigmoidDerivationx(outh1) pdNeth1W1 = i1 pdNeth1W2 = i2 pdEW1 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W1 pdEW2 = pdEOuth1 * pdOuth1Neth1 * pdNeth1W2 pdNeto1Outh2 = weight[6-1] pdNeto2Outh2 = weight[8-1] pdOuth2Neth2 = sigmoidDerivationx(outh2) pdNeth2W3 = i1 pdNeth2W4 = i2 pdEOuth2 = pdEOuto1 * pdOuto1Neto1 * pdNeto1Outh2 + pdEOuto2 * pdOuto2Neto2 * pdNeto2Outh2 pdEW3 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W3 pdEW4 = pdEOuth2 * pdOuth2Neth2 * pdNeth2W4 #权重更新 weight[1-1] = weight[1-1] - alpha * pdEW1 weight[2-1] = weight[2-1] - alpha * pdEW2 weight[3-1] = weight[3-1] - alpha * pdEW3 weight[4-1] = weight[4-1] - alpha * pdEW4 weight[5-1] = weight[5-1] - alpha * pdEW5 weight[6-1] = weight[6-1] - alpha * pdEW6 weight[7-1] = weight[7-1] - alpha * pdEW7 weight[8-1] = weight[8-1] - alpha * pdEW8 # print(weight[1-1]) # print(weight[2-1]) # print(weight[3-1]) # print(weight[4-1]) # print(weight[5-1]) # print(weight[6-1]) # print(weight[7-1]) # print(weight[8-1])
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年01月12日
2025年01月12日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]