DDR爱好者之家 Design By 杰米
对于分布式追踪,主要有以下的几个概念:
- 追踪 Trace:就是由分布的微服务协作所支撑的一个事务。一个追踪,包含为该事务提供服务的各个服务请求。
- 跨度 Span:Span是事务中的一个工作流,一个Span包含了时间戳,日志和标签信息。Span之间包含父子关系,或者主从(Followup)关系。
- 跨度上下文 Span Context:跨度上下文是支撑分布式追踪的关键,它可以在调用的服务之间传递,上下文的内容包括诸如:从一个服务传递到另一个服务的时间,追踪的ID,Span的ID还有其它需要从上游服务传递到下游服务的信息。
我实现了一种简单的调用追踪。
import uuid
import os
import time
l = []
class Recorder(object):
def __init__(self,servername,root_span = None):
if root_span == None:
self.__span = Span(servername)
else:
self.__span = Span(servername,root_span)
#上下文管理器
def __enter__(self):
return self.__span
# 退出方法中,用来实现善后处理工作
def __exit__(self, exc_type, exc_val, exc_tb):
self.__span.record()
self.__span.record_save(self.__span.span)
class Span(object):
def __init__(self,servername,root_span = None):
self.servername = servername
self.span = self.newspan()
if root_span != None:
root_span.dic['child_span'] = self.span
self.span["root_span_flag"] = False
def newspan(self):
self.dic = {
"spanid": uuid.uuid4().int,
"servername": self.servername,
"location": "",
"ip": "",
"durationtime": 0,
"starttime": time.time(),
"endtime":0,
"tag": "",
"log": "",
"root_span_flag":True,
"child_span": ""
}
return self.dic
def record_save(self, span):
currenttracer = {"id": span["spanid"], "data": span}
print(currenttracer)
l.append(currenttracer)
def record(self):
self.span["servername"] = self.servername
self.span["location"] = os.getcwd() + "." + self.servername
self.span["endtime"] = time.time()
self.span["durationtime"] = self.span["endtime"] - self.span["starttime"]
def setspantag(self,tag):
self.span["tag"] = tag
def setspanlog(self,log):
self.span["log"] = log
# 连续调用
with Recorder('server1') as span:
time.sleep(1)
span.setspantag("test")
#调用server1方法
print("server1")
with Recorder('server2',span) as span1:
time.sleep(2)
# 调用server2方法
print("server2")
with Recorder('server3',span1) as span2:
time.sleep(0.5)
# 调用server3方法
print("server3")
#单独调用记录
with Recorder('server4') as span_test1:
time.sleep(1.5)
print("server4")
with Recorder('server5') as span_test2:
time.sleep(2)
print("server5")
运行结果:
server1
server2
server3
{'id': 224716339449765695394515303164364012192, 'data': {'spanid': 224716339449765695394515303164364012192, 'servername': 'server3', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server3', 'ip': '', 'durationtime': 0.5004403591156006, 'starttime': 1598947338.0551107, 'endtime': 1598947338.555551, 'tag': '', 'log': '', 'root_span_flag': False, 'child_span': None}}
{'id': 254736847532758359233387151739984206570, 'data': {'spanid': 254736847532758359233387151739984206570, 'servername': 'server2', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server2', 'ip': '', 'durationtime': 2.501264810562134, 'starttime': 1598947336.0542862, 'endtime': 1598947338.555551, 'tag': '', 'log': '', 'root_span_flag': False, 'child_span': {'spanid': 224716339449765695394515303164364012192, 'servername': 'server3', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server3', 'ip': '', 'durationtime': 0.5004403591156006, 'starttime': 1598947338.0551107, 'endtime': 1598947338.555551, 'tag': '', 'log': '', 'root_span_flag': False, 'child_span': None}}}
{'id': 91028031631192607088457781914309166266, 'data': {'spanid': 91028031631192607088457781914309166266, 'servername': 'server1', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server1', 'ip': '', 'durationtime': 3.5021069049835205, 'starttime': 1598947335.0534441, 'endtime': 1598947338.555551, 'tag': 'test', 'log': '', 'root_span_flag': True, 'child_span': {'spanid': 254736847532758359233387151739984206570, 'servername': 'server2', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server2', 'ip': '', 'durationtime': 2.501264810562134, 'starttime': 1598947336.0542862, 'endtime': 1598947338.555551, 'tag': '', 'log': '', 'root_span_flag': False, 'child_span': {'spanid': 224716339449765695394515303164364012192, 'servername': 'server3', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server3', 'ip': '', 'durationtime': 0.5004403591156006, 'starttime': 1598947338.0551107, 'endtime': 1598947338.555551, 'tag': '', 'log': '', 'root_span_flag': False, 'child_span': None}}}}
server4
{'id': 103171729522922437998918618387133480096, 'data': {'spanid': 103171729522922437998918618387133480096, 'servername': 'server4', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server4', 'ip': '', 'durationtime': 1.5001769065856934, 'starttime': 1598947338.555551, 'endtime': 1598947340.055728, 'tag': '', 'log': '', 'root_span_flag': True, 'child_span': None}}
server5
{'id': 320091321623887285825256878422834254741, 'data': {'spanid': 320091321623887285825256878422834254741, 'servername': 'server5', 'location': 'D:\\python_protest\\protest\\trace\\trace_main.server5', 'ip': '', 'durationtime': 2.0005736351013184, 'starttime': 1598947340.055728, 'endtime': 1598947342.0563016, 'tag': '', 'log': '', 'root_span_flag': True, 'child_span': None}}
关于下一步,会使用redis存储其结果,并进行相应的输出分析。
修过不能追踪同级调用的问题
import uuid
import os
import time
l = []
class Recorder(object):
def __init__(self,servername,root_span = None):
if root_span == None:
self.__span = Span(servername)
else:
self.__span = Span(servername,root_span)
#上下文管理器
def __enter__(self):
return self.__span
# 退出方法中,用来实现善后处理工作
def __exit__(self, exc_type, exc_val, exc_tb):
self.__span.record()
self.__span.record_save(self.__span.span)
class Span(object):
def __init__(self,servername,root_span = None):
self.servername = servername
self.span = self.newspan()
if root_span != None:
root_span.dic['child_span'].append(self.span)
self.span["root_span_flag"] = False
def newspan(self):
self.dic = {
"spanid": uuid.uuid4().int,
"servername": self.servername,
"location": "",
"ip": "",
"durationtime": 0,
"starttime": time.time(),
"endtime":0,
"tag": "",
"log": "",
"root_span_flag":True,
"child_span": []
}
return self.dic
def record_save(self, span):
currenttracer = {"id": span["spanid"], "data": span}
print(currenttracer)
l.append(currenttracer)
def record(self):
self.span["servername"] = self.servername
self.span["location"] = os.getcwd() + "." + self.servername
self.span["endtime"] = time.time()
self.span["durationtime"] = self.span["endtime"] - self.span["starttime"]
def setspantag(self,tag):
self.span["tag"] = tag
def setspanlog(self,log):
self.span["log"] = log
# 连续调用
with Recorder('server1') as span:
time.sleep(1)
span.setspantag("test")
#调用server1方法
print("server1")
with Recorder('server2',span) as span1:
time.sleep(2)
# 调用server2方法
print("server2")
with Recorder('server3',span1) as span2:
time.sleep(0.5)
# 调用server3方法
print("server3")
# 并级连续调用
# with Recorder('server1') as span1:
# time.sleep(1)
# span1.setspantag("test")
# #调用server1方法
# print("server1")
# with Recorder('server2',span1) as span2:
# time.sleep(2)
# # 调用server2方法
# print("server2")
# with Recorder('server3',span1) as span3:
# time.sleep(0.5)
# # 调用server3方法
# print("server3")
# #单独调用记录
# with Recorder('server4') as span_test1:
# time.sleep(1.5)
# print("server4")
#
# with Recorder('server5') as span_test2:
# time.sleep(2)
# print("server5")
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年11月08日
2025年11月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]