DDR爱好者之家 Design By 杰米
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : 自实现一个线性回归.py # @Author: 赵路仓 # @Date : 2020/4/12 # @Desc : # @Contact : 398333404@qq.com import os import tensorflow as tf def linear_regression(): """ 自实现一个线性回归 :return: """ # 命名空间 with tf.variable_scope("prepared_data"): # 准备数据 x = tf.random_normal(shape=[100, 1], name="Feature") y_true = tf.matmul(x, [[0.08]]) + 0.7 # x = tf.constant([[1.0], [2.0], [3.0]]) # y_true = tf.constant([[0.78], [0.86], [0.94]]) with tf.variable_scope("create_model"): # 2.构造函数 # 定义模型变量参数 weights = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Weights")) bias = tf.Variable(initial_value=tf.random_normal(shape=[1, 1], name="Bias")) y_predit = tf.matmul(x, weights) + bias with tf.variable_scope("loss_function"): # 3.构造损失函数 error = tf.reduce_mean(tf.square(y_predit - y_true)) with tf.variable_scope("optimizer"): # 4.优化损失 optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(error) # 收集变量 tf.summary.scalar("error", error) tf.summary.histogram("weights", weights) tf.summary.histogram("bias", bias) # 合并变量 merged = tf.summary.merge_all() # 创建saver对象 saver = tf.train.Saver() # 显式的初始化变量 init = tf.global_variables_initializer() # 开启会话 with tf.Session() as sess: # 初始化变量 sess.run(init) # 创建事件文件 file_writer = tf.summary.FileWriter("E:/tmp/linear", graph=sess.graph) # print(x.eval()) # print(y_true.eval()) # 查看初始化变量模型参数之后的值 print("训练前模型参数为:权重%f,偏置%f" % (weights.eval(), bias.eval())) # 开始训练 for i in range(1000): sess.run(optimizer) print("第%d次参数为:权重%f,偏置%f,损失%f" % (i + 1, weights.eval(), bias.eval(), error.eval())) # 运行合并变量操作 summary = sess.run(merged) # 将每次迭代后的变量写入事件 file_writer.add_summary(summary, i) # 保存模型 if i == 999: saver.save(sess, "./tmp/model/my_linear.ckpt") # # 加载模型 # if os.path.exists("./tmp/model/checkpoint"): # saver.restore(sess, "./tmp/model/my_linear.ckpt") print("参数为:权重%f,偏置%f,损失%f" % (weights.eval(), bias.eval(), error.eval())) pre = [[0.5]] prediction = tf.matmul(pre, weights) + bias sess.run(prediction) print(prediction.eval()) return None if __name__ == "__main__": linear_regression()
以上就是python 实现一个简单的线性回归案例的详细内容,更多关于python 实现线性回归的资料请关注其它相关文章!
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2024年12月29日
2024年12月29日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]