1 椭圆肤色检测模型
原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。
YCRCB颜色空间
椭圆模型
代码
def ellipse_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256,256), dtype= np.uint8 ) cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1) YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): CR= YCRCB[i,j,1] CB= YCRCB[i,j,2] if skinCrCbHist [CR,CB]>0: skin[i,j]= 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img,img,mask= skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法
原理
针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold
代码
def cr_otsu(image): """YCrCb颜色空间的Cr分量+Otsu阈值分割 :param image: 图片路径 :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(ycrcb) cr1 = cv2.GaussianBlur(cr, (5, 5), 0) _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.namedWindow("image raw", cv2.WINDOW_NORMAL) cv2.imshow("image raw", img) cv2.namedWindow("image CR", cv2.WINDOW_NORMAL) cv2.imshow("image CR", cr1) cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL) cv2.imshow("Skin Cr+OTSU", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("seperate", cv2.WINDOW_NORMAL) cv2.imshow("seperate", dst) cv2.waitKey()
效果
3 基于YCrCb颜色空间Cr, Cb范围筛选法
原理
类似于第二种方法,只不过是对CR和CB两个通道综合考虑
代码
def crcb_range_sceening(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(ycrcb) skin = np.zeros(cr.shape,dtype= np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120: skin[i][j]= 255 else: skin[i][j] = 0 cv2.namedWindow(image,cv2.WINDOW_NORMAL) cv2.imshow(image,img) cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL) cv2.imshow(image+"skin2 cr+cb",skin) dst = cv2.bitwise_and(img,img,mask=skin) cv2.namedWindow("cutout",cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
4 HSV颜色空间H,S,V范围筛选法
原理
还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。
代码
def hsv_detect(image): """ :param image: 图片路径 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) (_h,_s,_v)= cv2.split(hsv) skin= np.zeros(_h.shape,dtype=np.uint8) (x,y)= _h.shape for i in range(0,x): for j in range(0,y): if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255): skin[i][j] = 255 else: skin[i][j] = 0 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL) cv2.imshow(image + "hsv", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey()
效果
示例
import cv2 import numpy as np def ellipse_detect(image): """ :param image: img path :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256, 256), dtype=np.uint8) cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1) YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x, y) = cr.shape for i in range(0, x): for j in range(0, y): CR = YCRCB[i, j, 1] CB = YCRCB[i, j, 2] if skinCrCbHist[CR, CB] > 0: skin[i, j] = 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey() if __name__ == '__main__': ellipse_detect('./test.png')
到此这篇关于python opencv肤色检测的实现示例的文章就介绍到这了,更多相关opencv 肤色检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]