一、简介
Locust 是一个易于使用,分布式,用户负载测试工具。它用于负载测试 web 站点(或其他系统),并计算出一个系统可以处理多少并发用户。在测试期间,一大群虚拟用户访问你的网站。每个测试用户的行为由您定义,集群过程由 web UI 实时监控。这将帮助您在让真正的用户进入之前进行测试并识别代码中的瓶颈。
Locust 完全是基于事件的,因此在一台机器上支持数千个并发用户是可能的。与许多其他基于事件的应用程序不同,它不使用回调。相反它通过 gevent 使用轻量级协程。这允许您用 Python 编写非常有表现力的场景,而不用回调使代码复杂化。
二、安装
用 pip 管理工具安装:
pip3 install locust
检查是否安装成功,执行命令:locust --v
三、压测过程
1.编写脚本
Locust 不同于 jmeter 可以用 GUI 来创建压测脚本。Locust 需要自己编写 python 脚本,压测负载脚本主要包含两个子类UserTask和WebsiteUser,分别继承TaskSet和Httplocust类,拥有这两个父类的公共属性和方法。
from locust import HttpLocust, TaskSet, task, between import os,json # 定义用户行为 class UserTask(TaskSet): def on_start(self): '''初始化数据,每个虚拟用户只执行一次''' self.client.post("/login",{"username":"test","password":"123456"}) @task(2) def home_index(self): r = self.client.get("/sz/Home/DefaultHomeV2Request") assert json.loads(r.text)['Error'] == 0 @task(1) def sale(self): self.client.get("/sz/Home/FlashSaleRequest") assert json.loads(r.text)['Error'] == 0 def on_stop(self): '''销毁数据,每个虚拟用户只执行一次''' self.client.post("/SignOut",{"CustomerGuid":"c7d7e646-9ce2-499b-a22e-a3c98d4545fe"}) class WebsiteUser(HttpLocust): host = 'http://10.1.62.126' task_set = UserTask wait_time = between(3, 5) if __name__ == "__main__": os.system('locust -f stress_test.py ')
locust 运行时:
- on_start() :每个并发用户在开始前各执行一次
- on_stop():每个并发用户在结束后各执行一次
- @task: 通过装饰器设置运行权重,比如上面代码中 执行任务 home_index 和 sale 的总请求为 2:1
- assert:断言设置
- wait_time :每个任务之间设置间隔时间,随机从3~5区间内取,单位是 s
- locust -f:指定 .py 压测脚本路径
2. Locust 监控
顺带提一下 locust web UI监控是基于 flask 框架,不指定 port 的话,默认地址:http://localhost:8089
开始测试,Locust 提供一个简易的监控界面,可以看到 RPS、响应时间 和 部分曲线图
3.运行模式
1.web UI 模式
locust -f stress_test.py --web-host 10.1.44.31 --web-port 8090
--web-host:指定 web UI IP,默认 localhost
--web-port:指定 web UI 端口,默认 8089
2. no web 模式
locust -f stress_test.py --no-web -c 100 -r 20 -t 120
--no-web:指定无 web UI模式
-c:起多少 locust 用户(等同于起多少 tcp 连接)
-r:多少时间内,把上述 -c 设置的虚拟用户全部启动
-t:脚本运行多少时间,单位s
在 --no-web 模式下的报告如下:
4.分布式进程
Locust 是由 python 编写的,由于GIL的限制,单进程不能利用CPU多核的优势(实际测试结果也是一样,8核心的虚拟机,只有一核达到了95%以上的使用率,其余7核只围观,不出力)。所以单台机器上想要尽可能的压榨 CPU,只能开启多进程,一般有多少个核心启多少进程。
单台多进程:
先启一个 master
locust -f /home/script/stress_test.py --web-host 10.1.62.223 --master
再启 8 个 slave
locust -f /home/script/stress_test.py --slave
slave 节点启动后,在 locust 监控中能看到
多台多进程:
多台机器搭建 Locust 分布式 和 单台搭建多进程差不多。只有一个区别,如果 slave 和 master 不在一台机器上, slave 需要指定 --master-host 参数:
更多功能使用请查看Locust官方文档,形成良好的习惯 :官方文档
四、总结
Locust 基于 python 脚本定制化压测,使用 python 语言来实现 参数化、关联参数、断言和一些复杂的压测场景非常方便。Locust 使用协程来构建tcp连接,本身单机并发能力强,但内部是由requests库的httpclient 发起网络请求,requests库功能挺全面,性能却很一般,好在 Locust 支持分布式,弥补了一定的性能缺陷。根据自己做的测试,同样几台客户机,jmeter搭建分布式测出的 qps 比 Locust分布式 高1/3。如果要提升 locust 单进程性能,可以将 httpclient 的实现方式从 requests 换成 geventhttpclient ,这个下一篇再讲述。
以上就是python性能测试工具locust的使用的详细内容,更多关于python性能测试工具locust的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]