示例:《电影类型分类》
获取数据来源
电影名称
打斗次数
接吻次数
电影类型
California Man
3
104
Romance
He's Not Really into Dudes
8
95
Romance
Beautiful Woman
1
81
Romance
Kevin Longblade
111
15
Action
Roob Slayer 3000
99
2
Action
Amped II
88
10
Action
Unknown
18
90
unknown
数据显示:肉眼判断电影类型unknown是什么
from matplotlib import pyplot as plt "font.sans-serif"] = ["SimHei"] # 电影名称 names = ["California Man", "He's Not Really into Dudes", "Beautiful Woman", "Kevin Longblade", "Robo Slayer 3000", "Amped II", "Unknown"] # 类型标签 labels = ["Romance", "Romance", "Romance", "Action", "Action", "Action", "Unknown"] colors = ["darkblue", "red", "green"] colorDict = {label: color for (label, color) in zip(set(labels), colors)} print(colorDict) # 打斗次数,接吻次数 X = [3, 8, 1, 111, 99, 88, 18] Y = [104, 95, 81, 15, 2, 10, 88] "通过打斗次数和接吻次数判断电影类型", fontsize=18) plt.xlabel("电影中打斗镜头出现的次数", fontsize=16) plt.ylabel("电影中接吻镜头出现的次数", fontsize=16) "htmlcode"># 自定义实现 mytest1.py import numpy as np "Romance", "Romance", "Romance", "Action", "Action", "Action"] return features, labels """ KNN算法实现,采用欧式距离 :param testFeature: 测试数据集,ndarray类型,一维数组 :param trainingSet: 训练数据集,ndarray类型,二维数组 :param labels: 训练集对应标签,ndarray类型,一维数组 :param k: k值,int类型 :return: 预测结果,类型与标签中元素一致 """ dataSetsize = trainingSet.shape[0] """ 构建一个由dataSet[i] - testFeature的新的数据集diffMat diffMat中的每个元素都是dataSet中每个特征与testFeature的差值(欧式距离中差) """ testFeatureArray = np.tile(testFeature, (dataSetsize, 1)) diffMat = testFeatureArray - trainingSet # 对每个差值求平方 sqDiffMat = diffMat ** 2 # 计算dataSet中每个属性与testFeature的差的平方的和 sqDistances = sqDiffMat.sum(axis=1) # 计算每个feature与testFeature之间的欧式距离 distances = sqDistances ** 0.5 """ 排序,按照从小到大的顺序记录distances中各个数据的位置 如distance = [5, 9, 0, 2] 则sortedStance = [2, 3, 0, 1] """ sortedDistances = distances.argsort() "htmlcode">import pandas as pd import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D "FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"] datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]]) datingTrainLabel = np.array(datingData["label"]) return datingData, datingTrainData, datingTrainLabel "3d") plt.scatter(np.array([datingTrainData[x][0] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "smallDoses"]), np.array([datingTrainData[x][1] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "smallDoses"]), np.array([datingTrainData[x][2] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "smallDoses"]), c="red") plt.scatter(np.array([datingTrainData[x][0] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "didntLike"]), np.array([datingTrainData[x][1] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "didntLike"]), np.array([datingTrainData[x][2] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "didntLike"]), c="green") plt.scatter(np.array([datingTrainData[x][0] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "largeDoses"]), np.array([datingTrainData[x][1] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "largeDoses"]), np.array([datingTrainData[x][2] for x in range(len(datingTrainLabel)) if datingTrainLabel[x] == "largeDoses"]), c="blue") plt.xlabel("飞行里程数", fontsize=16) plt.ylabel("视频游戏耗时百分比", fontsize=16) plt.clabel("冰淇凌消耗", fontsize=16) plt.show() datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH1) datingView3D(datingTrainData, datingTrainLabel)问题分析:抽取数据集的前10%在数据集的后90%进行测试
编码实现
# 自定义方法实现 import pandas as pd import numpy as np "FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek", "label"] datingTrainData = np.array(datingData[["FlightDistance", "PlaytimePreweek", "IcecreamCostPreweek"]]) datingTrainLabel = np.array(datingData["label"]) return datingData, datingTrainData, datingTrainLabel "The total error rate is : {}\n".format(error/float(numberTest))) "__main__": FILEPATH = "./datingTestSet1.txt" datingTest(FILEPATH) # python 第三方包实现 import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassifier "__main__": FILEPATH = "./datingTestSet1.txt" datingData, datingTrainData, datingTrainLabel = loadDatingData(FILEPATH) normValuesData = autoNorm(datingTrainData) errorCount = 0 ratio = 0.10 total = normValuesData.shape[0] numberTest = int(total * ratio) k = 5 clf = KNeighborsClassifier(n_neighbors=k) clf.fit(normValuesData[numberTest:total], datingTrainLabel[numberTest:total]) for i in range(numberTest): res = clf.predict(normValuesData[i].reshape(1, -1)) if res != datingTrainLabel[i]: errorCount += 1 print("The total error rate is : {}\n".format(errorCount/float(numberTest)))以上就是python实现KNN近邻算法的详细内容,更多关于python实现KNN近邻算法的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]