最近在工作中遇到一个需求,就是要开一个接口来接收供应商推送的数据。项目采用的python的django框架,我是想也没想,就直接一梭哈,写出了如下代码:
class XXDataPushView(APIView): """ 接收xx数据推送 """ # ... @white_list_required def post(self, request, **kwargs): req_data = request.data or {} # ...
但随后,发现每日数据并没有任何变化,质问供应商是否没有做推送,在忽悠我们。然后对方给的答复是,他们推送的是gzip
压缩的数据流,接收端需要主动进行解压。此前从没有处理过这种压缩的数据,对方具体如何做的推送对我来说也是一个黑盒。
因此,我要求对方给一个推送的简单示例,没想到对方不讲武德,仍过来一段没法单独运行的java代码:
private byte[] compress(JSONObject body) { try { ByteArrayOutputStream out = new ByteArrayOutputStream(); GZIPOutputStream gzip = new GZIPOutputStream(out); gzip.write(body.toString().getBytes()); gzip.close(); return out.toByteArray(); } catch (Exception e) { logger.error("Compress data failed with error: " + e.getMessage()).commit(); } return JSON.toJSONString(body).getBytes(); } public void post(JSONObject body, String url, FutureCallback<HttpResponse> callback) { RequestBuilder requestBuilder = RequestBuilder.post(url); requestBuilder.addHeader("Content-Type", "application/json; charset=UTF-8"); requestBuilder.addHeader("Content-Encoding", "gzip"); byte[] compressData = compress(body); int timeout = (int) Math.max(((float)compressData.length) / 5000000, 5000); RequestConfig.Builder requestConfigBuilder = RequestConfig.custom(); requestConfigBuilder.setSocketTimeout(timeout).setConnectTimeout(timeout); requestBuilder.setEntity(new ByteArrayEntity(compressData)); requestBuilder.setConfig(requestConfigBuilder.build()); excuteRequest(requestBuilder, callback); } private void excuteRequest(RequestBuilder requestBuilder, FutureCallback<HttpResponse> callback) { HttpUriRequest request = requestBuilder.build(); httpClient.execute(request, new FutureCallback<HttpResponse>() { @Override public void completed(HttpResponse httpResponse) { try { int responseCode = httpResponse.getStatusLine().getStatusCode(); if (callback != null) { if (responseCode == 200) { callback.completed(httpResponse); } else { callback.failed(new Exception("Status code is not 200")); } } } catch (Exception e) { logger.error("Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit(); if (callback != null) { callback.failed(e); } } EntityUtils.consumeQuietly(httpResponse.getEntity()); } @Override public void failed(Exception e) { logger.error("Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit(); if (callback != null) { callback.failed(e); } } @Override public void cancelled() { logger.error("Request cancelled on " + requestBuilder.getMethod() + " " + requestBuilder.getUri()).commit(); if (callback != null) { callback.cancelled(); } } }); }
从上述代码可以看出,对方将json
数据压缩为了gzip
数据流stream
。于是搜索django
的文档,只有这段关于gzip
处理的装饰器描述:
django.views.decorators.gzip
里的装饰器控制基于每个视图的内容压缩。
- gzip_page()
如果浏览器允许 gzip 压缩,那么这个装饰器将压缩内容。它相应的设置了 Vary 头部,这样缓存将基于 Accept-Encoding 头进行存储。
但是,这个装饰器只是压缩请求响应至浏览器的内容,我们目前的需求是解压缩接收的数据。这不是我们想要的。
幸运的是,在flask
中有一个扩展叫flask-inflate
,安装了此扩展会自动对请求来的数据做解压操作。查看该扩展的具体代码处理:
# flask_inflate.py import gzip from flask import request GZIP_CONTENT_ENCODING = 'gzip' class Inflate(object): def __init__(self, app=None): if app is not None: self.init_app(app) @staticmethod def init_app(app): app.before_request(_inflate_gzipped_content) def inflate(func): """ A decorator to inflate content of a single view function """ def wrapper(*args, **kwargs): _inflate_gzipped_content() return func(*args, **kwargs) return wrapper def _inflate_gzipped_content(): content_encoding = getattr(request, 'content_encoding', None) if content_encoding != GZIP_CONTENT_ENCODING: return # We don't want to read the whole stream at this point. # Setting request.environ['wsgi.input'] to the gzipped stream is also not an option because # when the request is not chunked, flask's get_data will return a limited stream containing the gzip stream # and will limit the gzip stream to the compressed length. This is not good, as we want to read the # uncompressed stream, which is obviously longer. request.stream = gzip.GzipFile(fileobj=request.stream)
上述代码的核心是:
request.stream = gzip.GzipFile(fileobj=request.stream)
于是,在django
中可以如下处理:
class XXDataPushView(APIView): """ 接收xx数据推送 """ # ... @white_list_required def post(self, request, **kwargs): content_encoding = request.META.get("HTTP_CONTENT_ENCODING", "") if content_encoding != "gzip": req_data = request.data or {} else: gzip_f = gzip.GzipFile(fileobj=request.stream) data = gzip_f.read().decode(encoding="utf-8") req_data = json.loads(data) # ... handle req_data
ok, 问题完美解决。还可以用如下方式测试请求:
import gzip import requests import json data = {} data = json.dumps(data).encode("utf-8") data = gzip.compress(data) resp = requests.post("http://localhost:8760/push_data/",data=data,headers={"Content-Encoding": "gzip", "Content-Type":"application/json;charset=utf-8"}) print(resp.json())
以上就是如何用Django处理gzip数据流的详细内容,更多关于Django处理gzip数据流的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]