DDR爱好者之家 Design By 杰米

python中在实现一元线性回归时会使用最小二乘法,那你知道最小二乘法是什么吗。其实最小二乘法为分类回归算法的基础,从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法。本文向大家介绍python中的最小二乘法。

一、最小二乘法是什么

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。

二、最小二乘法实现原理

通过最小化误差的平方和寻找数据的最佳函数匹配。

三、最小二乘法功能

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

四、最小二乘法两种视角描述:“多线→一点”视角与“多点→一线”视角

1、已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解;

2、已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k和b,使得所有点到该直线的距离平方之和最小,设此时满足要求的k=k0,b=b0,则直线方程为y=k0x+b0。

实例扩展:

最小二乘法矩阵

#! /usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
def calc_left_k_mat(k):
 """
 获得左侧k矩阵
 :param k:
 :return:
 """
 k_mat = []
 for i in range(k + 1):
  now_line = []
  for j in range(k + 1):
   now_line.append(j + i)
  k_mat.append(now_line)
 return k_mat
def calc_right_k_mat(k):
 """
 计算右侧矩阵
 :param k:
 :return:
 """
 k_mat = []
 for i in range(k + 1):
  k_mat.append([i, i + 1])
 return k_mat
def pow_k(x, k):
 """
 计算x列表中的k次方和
 :param x: 点集合的x坐标
 :param k: k值
 :return:
 """
 sum = 0
 for i in x:
  sum += i ** k
 return sum
def get_left_mat_with_x(k_mat, k):
 """
 将 左侧k矩阵运算得到左侧新的矩阵
 :param k_mat:
 :param k:
 :return:
 """
 left_mat = []
 for kl in k_mat:
  now_data = []
  for k in kl:
   now_data.append(pow_k(x, k))
  left_mat.append(now_data)
 return left_mat
def get_right_mat_with(right_k_mat):
 """
 将 右侧k矩阵运算得到右侧新的矩阵
 :param right_k_mat:
 :return:
 """
 right_mat = []
 for i in range(len(right_k_mat)):
  sum = 0
  for xL, yL in zip(x, y):
   a = (xL ** right_k_mat[i][0]) * (yL ** right_k_mat[i][1])
   sum += a
  right_mat.append(sum)
 return right_mat
def fuse_mat(left, right):
 """
 融合两个矩阵
 :param left:
 :param right:
 :return:
 """
 new_mat = []
 for i in range(len(left)):
  asd = np.append(left[i], right[i])
  new_mat.append(list(asd))
 return new_mat
if __name__ == '__main__':
 k = 3
 x = [1, 2, 3]
 y = [1, 2, 3]
 # 计算原始左侧K矩阵
 left_k_mat = calc_left_k_mat(k)
 print("原始左侧K矩阵")
 print(left_k_mat)
 # 计算原始右侧K矩阵
 right_k_mat = calc_right_k_mat(k)
 print("原始右侧k矩阵")
 print(right_k_mat)
 # 计算左侧 k 矩阵
 new_left_mat = get_left_mat_with_x(k_mat=left_k_mat, k=k)
 # 计算右侧 k 矩阵
 new_right_mat = get_right_mat_with(right_k_mat=right_k_mat)
 print("计算后左侧K矩阵")
 print(new_left_mat)
 print("计算后右侧侧K矩阵")
 print(new_right_mat)
 print("-----" * 10)
 # 融合两个矩阵 左侧 矩阵每一行增加 右侧矩阵的对应行
 new_all = fuse_mat(new_left_mat, new_right_mat)
 print("完整矩阵")
 print(new_all)
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。