路径:
https://pytorch.org/docs/master/nn.init.html#nn-init-doc
初始化函数:torch.nn.init
# -*- coding: utf-8 -*- """ Created on 2019 @author: fancp """ import torch import torch.nn as nn w = torch.empty(3,5) #1.均匀分布 - u(a,b) #torch.nn.init.uniform_(tensor, a=0.0, b=1.0) print(nn.init.uniform_(w)) # ============================================================================= # tensor([[0.9160, 0.1832, 0.5278, 0.5480, 0.6754], # [0.9509, 0.8325, 0.9149, 0.8192, 0.9950], # [0.4847, 0.4148, 0.8161, 0.0948, 0.3787]]) # ============================================================================= #2.正态分布 - N(mean, std) #torch.nn.init.normal_(tensor, mean=0.0, std=1.0) print(nn.init.normal_(w)) # ============================================================================= # tensor([[ 0.4388, 0.3083, -0.6803, -1.1476, -0.6084], # [ 0.5148, -0.2876, -1.2222, 0.6990, -0.1595], # [-2.0834, -1.6288, 0.5057, -0.5754, 0.3052]]) # ============================================================================= #3.常数 - 固定值 val #torch.nn.init.constant_(tensor, val) print(nn.init.constant_(w, 0.3)) # ============================================================================= # tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000], # [0.3000, 0.3000, 0.3000, 0.3000, 0.3000], # [0.3000, 0.3000, 0.3000, 0.3000, 0.3000]]) # ============================================================================= #4.全1分布 #torch.nn.init.ones_(tensor) print(nn.init.ones_(w)) # ============================================================================= # tensor([[1., 1., 1., 1., 1.], # [1., 1., 1., 1., 1.], # [1., 1., 1., 1., 1.]]) # ============================================================================= #5.全0分布 #torch.nn.init.zeros_(tensor) print(nn.init.zeros_(w)) # ============================================================================= # tensor([[0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.]]) # ============================================================================= #6.对角线为 1,其它为 0 #torch.nn.init.eye_(tensor) print(nn.init.eye_(w)) # ============================================================================= # tensor([[1., 0., 0., 0., 0.], # [0., 1., 0., 0., 0.], # [0., 0., 1., 0., 0.]]) # ============================================================================= #7.xavier_uniform 初始化 #torch.nn.init.xavier_uniform_(tensor, gain=1.0) #From - Understanding the difficulty of training deep feedforward neural networks - Bengio 2010 print(nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))) # ============================================================================= # tensor([[-0.1270, 0.3963, 0.9531, -0.2949, 0.8294], # [-0.9759, -0.6335, 0.9299, -1.0988, -0.1496], # [-0.7224, 0.2181, -1.1219, 0.8629, -0.8825]]) # ============================================================================= #8.xavier_normal 初始化 #torch.nn.init.xavier_normal_(tensor, gain=1.0) print(nn.init.xavier_normal_(w)) # ============================================================================= # tensor([[ 1.0463, 0.1275, -0.3752, 0.1858, 1.1008], # [-0.5560, 0.2837, 0.1000, -0.5835, 0.7886], # [-0.2417, 0.1763, -0.7495, 0.4677, -0.1185]]) # ============================================================================= #9.kaiming_uniform 初始化 #torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu') #From - Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - HeKaiming 2015 print(nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')) # ============================================================================= # tensor([[-0.7712, 0.9344, 0.8304, 0.2367, 0.0478], # [-0.6139, -0.3916, -0.0835, 0.5975, 0.1717], # [ 0.3197, -0.9825, -0.5380, -1.0033, -0.3701]]) # ============================================================================= #10.kaiming_normal 初始化 #torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu') print(nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')) # ============================================================================= # tensor([[-0.0210, 0.5532, -0.8647, 0.9813, 0.0466], # [ 0.7713, -1.0418, 0.7264, 0.5547, 0.7403], # [-0.8471, -1.7371, 1.3333, 0.0395, 1.0787]]) # ============================================================================= #11.正交矩阵 - (semi)orthogonal matrix #torch.nn.init.orthogonal_(tensor, gain=1) #From - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe 2013 print(nn.init.orthogonal_(w)) # ============================================================================= # tensor([[-0.0346, -0.7607, -0.0428, 0.4771, 0.4366], # [-0.0412, -0.0836, 0.9847, 0.0703, -0.1293], # [-0.6639, 0.4551, 0.0731, 0.1674, 0.5646]]) # ============================================================================= #12.稀疏矩阵 - sparse matrix #torch.nn.init.sparse_(tensor, sparsity, std=0.01) #From - Deep learning via Hessian-free optimization - Martens 2010 print(nn.init.sparse_(w, sparsity=0.1)) # ============================================================================= # tensor([[ 0.0000, 0.0000, -0.0077, 0.0000, -0.0046], # [ 0.0152, 0.0030, 0.0000, -0.0029, 0.0005], # [ 0.0199, 0.0132, -0.0088, 0.0060, 0.0000]]) # =============================================================================
补充:【pytorch参数初始化】 pytorch默认参数初始化以及自定义参数初始化
本文用两个问题来引入
1.pytorch自定义网络结构不进行参数初始化会怎样,参数值是随机的吗?
2.如何自定义参数初始化?
先回答第一个问题
在pytorch中,有自己默认初始化参数方式,所以在你定义好网络结构以后,不进行参数初始化也是可以的。
1.Conv2d继承自_ConvNd,在_ConvNd中,可以看到默认参数就是进行初始化的,如下图所示
2.torch.nn.BatchNorm2d也一样有默认初始化的方式
3.torch.nn.Linear也如此
现在来回答第二个问题。
pytorch中对神经网络模型中的参数进行初始化方法如下:
from torch.nn import init #define the initial function to init the layer's parameters for the network def weigth_init(m): if isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data) init.constant_(m.bias.data,0.1) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0,0.01) m.bias.data.zero_()
首先定义了一个初始化函数,接着进行调用就ok了,不过要先把网络模型实例化:
#Define Network model = Net(args.input_channel,args.output_channel) model.apply(weigth_init)
此上就完成了对模型中训练参数的初始化。
在知乎上也有看到一个类似的版本,也相应的贴上来作为参考了:
def initNetParams(net): '''Init net parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.xavier_uniform(m.weight) if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) initNetParams(net)
再说一下关于模型的保存及加载
1.保存有两种方式,第一种是保存模型的整个结构信息和参数,第二种是只保存模型的参数
#保存整个网络模型及参数 torch.save(net, 'net.pkl') #仅保存模型参数 torch.save(net.state_dict(), 'net_params.pkl')
2.加载对应保存的两种网络
# 保存和加载整个模型 torch.save(model_object, 'model.pth') model = torch.load('model.pth') # 仅保存和加载模型参数 torch.save(model_object.state_dict(), 'params.pth') model_object.load_state_dict(torch.load('params.pth'))
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]