DDR爱好者之家 Design By 杰米

目的:

把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备。

Pytorch给了很方便的读取参数接口:

nn.Module.parameters()

直接看demo:

from torchvision.models.alexnet import alexnet 
model = alexnet(pretrained=True).eval().cuda()
parameters = model.parameters()
for p in parameters:
  numpy_para = p.detach().cpu().numpy()
  print(type(numpy_para))
  print(numpy_para.shape)

上面得到的numpy_para就是numpy参数了~

Note:

model.parameters()是以一个生成器的形式迭代返回每一层的参数。所以用for循环读取到各层的参数,循环次数就表示层数。

而每一层的参数都是torch.nn.parameter.Parameter类型,是Tensor的子类,所以直接用tensor转numpy(即p.detach().cpu().numpy())的方法就可以直接转成numpy矩阵。

方便又好用,爆赞~

补充:pytorch训练好的.pth模型转换为.pt

将python训练好的.pth文件转为.pt

import torch
import torchvision
from unet import UNet
model = UNet(3, 2)#自己定义的网络模型
model.load_state_dict(torch.load("best_weights.pth"))#保存的训练模型
model.eval()#切换到eval()
example = torch.rand(1, 3, 320, 480)#生成一个随机输入维度的输入
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。