DDR爱好者之家 Design By 杰米

目的:

把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备。

Pytorch给了很方便的读取参数接口:

nn.Module.parameters()

直接看demo:

from torchvision.models.alexnet import alexnet 
model = alexnet(pretrained=True).eval().cuda()
parameters = model.parameters()
for p in parameters:
  numpy_para = p.detach().cpu().numpy()
  print(type(numpy_para))
  print(numpy_para.shape)

上面得到的numpy_para就是numpy参数了~

Note:

model.parameters()是以一个生成器的形式迭代返回每一层的参数。所以用for循环读取到各层的参数,循环次数就表示层数。

而每一层的参数都是torch.nn.parameter.Parameter类型,是Tensor的子类,所以直接用tensor转numpy(即p.detach().cpu().numpy())的方法就可以直接转成numpy矩阵。

方便又好用,爆赞~

补充:pytorch训练好的.pth模型转换为.pt

将python训练好的.pth文件转为.pt

import torch
import torchvision
from unet import UNet
model = UNet(3, 2)#自己定义的网络模型
model.load_state_dict(torch.load("best_weights.pth"))#保存的训练模型
model.eval()#切换到eval()
example = torch.rand(1, 3, 320, 480)#生成一个随机输入维度的输入
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("model.pt")

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。