Node.js 程序的运行可能会受 CPU 或输入输出操作的限制而十分缓慢。从 CPU 角度看,程序运行缓慢的典型原因之一就是未经优化的「热点路径」(一段经常被访问的代码)。从输入输出角度看,程序运行速度的局限可能是受底层操作系统影响,也可能是出于 Node 本身的故障。更或者,一个运行缓慢的程序可能跟 Node 本身没有任何关系,问题在于外部资源,比如数据库查询或是 API 调用缓慢,未经过优化处理。
在本文中,我们将重点识别并优化代码库中会导致 CPU 繁重运行的操作。同时,将探讨生产应用的配置文件,分析并作出可提高运作效率的改动。
由于 Node 的单线程性质,避免繁重的 CPU 负载对服务器来说尤为重要。因为在 CPU 上消耗的时间会占用响应其他请求的时间。如果你注意到自己的应用响应速度缓慢,而且 CPU 在这个过程中始终占用率较高,分析你的程序有助于找出瓶颈,并且使程序恢复快速运行的状态。
分析应用
复制生产环境中出现的缓慢程序问题非常难解决,而且十分耗时。值得庆幸的是,你不需要亲自做这些了。你可以在生产服务器上收集配置文件数据,然后离线分析。下面让我们来看一下几种分析方法。
1、使用内核级工具
首先,你可以使用内核级工具,比如 DTrace(Solaris, BSD),perf(Linux),或者 XPerf(Windows),从运行的进程中收集堆栈跟踪信息,然后生成火焰图。内核级分析对运行中的进程影响最小。火焰图是根据调用栈生成的支持放大缩小查看的向量图形。来自 Netflix 公司的 Yunong Xiao 针对 Linux 系统中 perf,发表过超赞的演讲和推文,帮助你加深对该技术的了解。如果你想在生产程序中保持高吞吐量,可以参考使用这种方法。
2、使用 V8 分析器
另一个选项是直接使用 V8 分析器。这种方式会与程序共享进程,因此它会影响程序性能。基于这个原因,请只在你遇到此类问题时运行 V8 分析器来捕获相关输出。该方法的好处是:你可以使用 Chrome 的所有分析工具,结合其输出结果(包括火焰图),对程序进行调查。
请运行以下代码来测试你的程序:
npm install v8-profiler --save
之后,在你的程序中添加以下代码:
const profiler = require('v8-profiler') const fs = require('fs') var profilerRunning = false function toggleProfiling () { if (profilerRunning) { const profile = profiler.stopProfiling() console.log('stopped profiling') profile.export() .pipe(fs.createWriteStream('./myapp-'+Date.now()+'.cpuprofile')) .once('error', profiler.deleteAllProfiles) .once('finish', profiler.deleteAllProfiles) profilerRunning = false return } profiler.startProfiling() profilerRunning = true console.log('started profiling') } process.on('SIGUSR2', toggleProfiling)
只要你发送 SIGUSR2 信号到此进程,它就会开始分析。再次发送一个 SIGUSR2 信号可以停止分析(代码如下)。
kill -SIGUSR2 [pid]
该进程的分析结果将被写入到当前工作路径的文件中(请确保该路径可被写入)。由于这是一个可编程接口,你可以随意触发它(使用 web endpoint,IPC,等等)。如果你对程序在何时变得缓慢有预感,你可以在任一时期触发该接口。建立自动触发对避免持续监看程序是非常有用的,但是它要求你对捕获时间以及捕获时长有预测性认知。
一旦已经收集好配置文件数据,将它加载到Chrome开发工具中,开始分析吧!
3、使用进程管理器
尽管直接使用 V8 分析器是非常有效且可定制的,但是它会进入你的代码库,并且会向项目添加又一项你可能不想要的依赖性条件。一种替代方式就是使用进程管理器,它可以在你需要分析时,用各种工具将你的程序包装起来。一种可选的工具是来自 StrongLoop 的 SLC 命令行工具。
首先,运行npm install strongloop –g,然后运行以下代码:
slc start [/path/to/app]
上述代码会在进程管理器中启动你的程序,你可以按需提取 CPU 分析数据。要想验证并获取应用程序 id,请运行:
slc ctl
你将得到与下面类似的运行结果:
Service ID: 1 Service Name: my-sluggish-app Environment variables: Name Value NODE_ENV production Instances: Version Agent version Debugger version Cluster size Driver metadata 5.0.1 2.0.2 1.0.0 1 N/A Processes: ID PID WID Listening Ports Tracking objects"htmlcode">slc ctl cpu-start 1.1.61023当我们觉得已经捕获到了迟滞行为,就可以运行以下代码来停止分析器:
slc ctl cpu-stop 1.1.61023以下代码将写文件至硬盘:
CPU profile written to `node.1.1.61023.cpuprofile`, load into Chrome Dev Tools好啦,就是这样。你可以像在 V8 分析器里那样把文件加载到 Chrome 里面进一步分析。
作出正确决定
在本文中,笔者展示了三种在 Node 中捕获生产环境下 CPU 使用量的方式。那么,你应该选用哪一种呢?下面是一些帮助你缩小决策范围的想法:
- 我需要分析很长一段时间:使用内核级工具。
- 我想用 Chrome 开发工具:使用 V8 分析器或者过程管理器。
- 我想捕获应用中的特定行为:使用 V8 分析器。
- 我不想影响到程序性能:使用内核级程序
- 我希望我不用挨个测试文件来获取程序分析信息:使用过程管理器
以上就是本文的全部内容,3种Node.js代码优化方式,希望大家可以熟练掌握。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]